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The latest research on developmental stage, according to the Model of Hierarchical
Complexity (MHC), shows that there is only 1 domain, that stage develops as log2(age)
and that the number of neurons of a species can predict the mean stage attained by that
species. This can be interpreted as saying that biology controls stage. However, humans
attain different stages and the biological mechanism that limits stage is still unknown.
Based on these findings, we argue that cognitive neuroscience studies of human
intelligence should shift from the general laws that govern development and brain
maturation to focusing on interindividual differences across development, so as to
complete the picture of human cognition beyond statistical norms. We here propose a
study that looks for differences in patterns of the brain activation between subjects
performing below and above formal stages. What differentiates this study from others
that have been conducted in the field of developmental psychology and cognitive
neuroscience is that this will explain for the first time not how, but why, some
individuals are hardwired to perform at higher stages than others. We intend to analyze
the data across different hierarchical complexity tasks and extract a saturation index
(SI) that informs about the processing load of problem solving. Second, we compare the
SI across subjects who attained different stages. This knowledge will provide for
understanding the biological basis of cognition, for improving the behavioral predictive
MHC, and for developing a connectionist model of cognition that emulates develop-
ment throughout life.

Keywords: developmental stage, postformal stage, stacked neural networks, cognitive
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Post-Piagetian theories of development claim
for the hierarchical integration of reasoning
abilities throughout life. A sequence of ordered
stages is usually defined, and the processes that
underlie stage transition are debated. All these
theories agree that some individuals achieve

highest developmental stages, while others not.
The Model of Hierarchical Complexity (MHC)
is one of these theories, which formulates that
stages are defined by an order of hierarchical
complexity (OHC) and demonstrates that the
OHC explains 98% of observed behavior (Giri,
Commons, & Harrigan, 2014). For this reason,
the MHC has a high predictive power when
applied to experimental settings. Theoretically,
it has also provided for a great degree of under-
standing of human behavior as its formulations
reveal that cognition is primarily a product of a
structural property of organisms.

Notwithstanding, the MHC has yet uncovered
why some individuals seem to be hardwired dif-
ferently, leading to differences in stage of perfor-
mance and, consequently, in behavioral patterns.
The work here presented is a proposal for ulti-
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mately answering why, not how, some individuals
achieve higher developmental stages than others.
We propose to look for this answer through the
neural correlates underlying stage of performance,
namely through power spectra electro cortical ac-
tivity (sEEG) and neuroimaging correlates (MRI).
Hence, this proposal lies in the overlap between
developmental psychology and cognitive neuro-
science and aims to provide for acknowledgment
of the biological basis of higher-order cognition,
both at a structural level and at a developmental
level. The answer to our question will also further
improve the predictive power of the Model of
Hierarchical Complexity, as we will ascribe to it
longer-term prediction capabilities, and represent
an important input for simulating human cognitive
development in an artificial intelligence algorithm.

The work is divided into four sections. First,
we describe in more detail the axioms of the
Model of Hierarchical Complexity and how
they apply to predicting behavior; second, we
revise some literature findings on the neural
correlates of intelligence and cognitive devel-
opment that support our proposal; third, we
briefly present some methodological consider-
ations, specifically in what refers to data anal-
ysis; fourth, we discuss how the outputs we plan
to extract contribute to improving the prediction
capabilities of the MHC and how they fit in the
development of an algorithm that simulates hu-
man cognitive development. Given the scope of
application of the outputs we expect to extract,
although this specific study concerns the field of
cognitive neuroscience and is defined within the
bounds of a neuroscientific study, it is included
in a wider line of research concerning compu-
tational modeling, developmental psychology,
and behavioral prediction, all together harvest-
ing for a stronger theoretical construction.

The Model of Hierarchical Complexity

“Smartness” is defined as the ability to solve
problems or tasks, which are measured by an
order of hierarchical complexity (Commons &
Pekker, 2008). Complexity is here operational-
ized as the number of concatenation operations
a task contains (Commons & Pekker, 2004).
Based on these notions, the mathematical
Model of Hierarchical Complexity was devel-
oped (Commons & Pekker, 2008), yielding a
major contribution—the discovery of the order
of complexity as the strongest predictor of ob-

servable behavior (Commons, Li, et al., 2014).
Following statistical procedures of factor anal-
ysis, the MHC shows the existence of 17 dis-
crete and hierarchical orders of complexity
throughout an equally spaced ordered sequence
(Commons & Jiang, 2014); these orders corre-
spond to stages of development, which serve for
characterizing cognitive capacity throughout
life.

At each order of complexity (or at each
stage), the individual is able to perform the
correspondent complexity actions and solve the
correspondent complexity tasks. Higher-order
task-actions are characterized by the nonarbi-
trary coordination of lower-order task-actions.
The individual becomes capable of organizing
and combining immediately lower order actions
in a nonarbitrary way, as shown in Figure 1.
Nonarbitrariness is the property that imbeds
new configurations with meaning.

To the formalization of the progressive
growth in hierarchical complexity of mental
operations, the MHC relies on the grounding
concept of reflective abstraction, proposed by
Piaget, which refers to the phenomenon of mak-
ing “the actions of one developmental level
become the object of the actions of the subse-
quent level” (Dawson-Tunik, Commons, Wil-
son, & Fischer, 2005). However, different from
Piagetian perspectives, the MHC presents a
conception of intelligence and development that
goes beyond formal operations, in that cognitive
development is a functional mechanism that
pervades throughout life (Commons, Li, et al.,
2014; Commons & Pekker, 2008).

Figure 1. Nonarbitrary coordination of lower-order
actions.

34 LEITE, BARKER, AND LUCAS

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



This post-Piagetian conception of human de-
velopment throughout adulthood simultane-
ously constitutes the major strength and weak-
ness of the model. The major strength because
the amount of evidence collected so far models
the shared properties of development and inter-
individual variability, showing that only some
individuals, not all, achieve higher postformal
stages (Commons, Li, et al., 2014). The major
weakness comes from the fact that the model
has not yet explained the reason underlying this
interindividual variability: why some individu-
als attain higher stages than others. The present
proposal delineates a method that ultimately
answers this remaining question: What limits
stage?

Biological Underpinnings of Stage, Skill
Acquisition, and Learning

The discovery of the order of complexity as
the strongest predictor of behavior across do-
mains (Commons, Li, et al., 2014) turned the
MHC into a nonmentalist structure-driven ap-
proach. This means that the MHC holds its
validity independently of the mental strategies
for problem solving. This also means that the
existence of a supporting biological structure
for cognitive development is under proof.

In fact, the MHC provided recent evidence
favoring a biological perspective over stage of
development. The first is that stage holds across
domains (Commons, Li, et al., 2014; Giri et al.,
2014), which suggests a general activation map-
ping or structure in the brain that supports cog-
nitive performance in all domains, even though
concept formation and representation has been
consistently shown to activate domain-specific
regions (Bauer & Just, 2015). Second, it shows
that stage develops as a function of log2(age),
which suggests that the roots of stage achieve-
ments are ontogenic (Commons, Miller, & Giri,
2014). This finding has been supported by cog-
nitive development literature (Wendelken, Fer-
rer, Whitaker, & Bunge, 2016). Third, there is
strong evidence that the number of neurons
predicts the mean developmental stage of a spe-
cies (Harrigan & Commons, 2014). This evi-
dence does not directly provide an argument for
stage specific differences in humans, but hints
that cognitive capabilities are traced back in the
neural architecture across species. Fourth, there
is intraspecies evidence of behavioral develop-

ment going together with a dynamic growth of
neuronal connections (Qin et al., 2014). Hence,
we can trace two valuable premises. One the
one hand, a fixed number of neurons is corre-
lated with the mean stage that a species
achieves, being it the stage of formal operations
in humans (Commons, Li, et al., 2014). On the
other hand, the number of connections linking
these unit changes throughout development,
which points toward a dynamic adjustment of
the neural architecture within some fixed ana-
tomical parameters. Taken these evidences to-
gether, the MHC suggests that cognitive devel-
opment is basically dependent upon these
structural and functional biological correlates,
providing an argument for biology controlling
stage.

Several brain-based indicators provide evi-
dence that there is a common ground between
brain dynamics and spurts of cognitive devel-
opment, which follow positive correlations as
children grow up. Namely, the number of neu-
rons and synapses, brain mass, myelination, pat-
terns of brain electrical activity, cortical thick-
ness, skull size, all represent a partial brain-
based description of cognitive development
(Fischer, 2008; Hudspeth & Pribram, 1990).
Discontinuities are evident in many of these
brain indicators. For instance, Supekar and col-
laborators (2013) conducted a series of experi-
ments validating the correlation between im-
plicit behavioral measures and development.
Namely, gray matter volume and intrinsic con-
nectivity not only can explain, but can further
predict performance gains, opposite to explicit
behavioral measures, such as neuropsychologi-
cal assessment scores. These findings built up
another sustainable argument for finding stage
in the brain and match the brain signatures that
have been found across other studies (Cho et al.,
2012; McClelland, McNaughton, & O’Reilly,
1995; Qin et al., 2014). The authors (Supekar et
al., 2013) further demonstrated that neural cor-
relates capture structural and functional changes
as learning and skill acquisition occur, even if in
a restricted timeframe of 8 weeks, and even if
no stage transition occurs. In general, experi-
ments conducted to date found promising re-
sults to the identification of the neural signa-
tures underlying learning, skill acquisition, and
development, both with MRI (Cho et al., 2012;
McClelland et al., 1995; Qin et al., 2014) and
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sEEG data (Fischer, 2008; Hudspeth & Pri-
bram, 1990; Klimesch, 1999).

In regards to MRI data, the majority of stud-
ies have been conducted regarding learning and
skill acquisition. It has been suggested that skill
acquisition in children is a phenomenon accom-
panied by a shifting from procedural-based
strategies to retrieval-based strategies, and that
this shifting is mainly associated with the hip-
pocampus-neocortex system (Cho et al., 2012;
McClelland et al., 1995). The authors further
suggested that this shifting is held across differ-
ent domains and, thus, that this neural system
might be critical for cognitive development in
general. A subsequent study was conducted
showing that this shift from procedure-based
strategies to memory-based ones goes along
with a decreased activation in prefrontal regions
and increased hippocampal activation. Beyond
childhood, retrieval-strategy use continued to
improve through adolescence into adulthood
and was associated with decreased activation,
but more stable interproblem representations in
the hippocampus (Qin et al., 2014). A complete
review of the role of the hippocampal-prefrontal
system in learning and memory is supportive of
these results (McClelland et al., 1995).

In regards to sEEG signatures, there is a
considerable corpus of knowledge linking brain
dynamics and cognitive maturation throughout
life (Fischer, 2008). Both tonic and phasic mea-
sures of sEEG patterns have been linked to
cognitive performance, with the latter being re-
lated to performance in problem solving. Rela-
tive energy shows systematic growth curves in
the occipital-parietal regions, with this growth
proceeding through spurts or plateaus, as is ob-
served for cognitive development (Fischer,
2008). Based on these findings, the nested-
network hypothesis was proposed, which con-
siders that the emergence of cognitive levels
correspond to a large cycle of growth of energy,
coherence, and other brain measures. Curiously,
increases in alpha energy occur through spurts
until adolescence, where individuals are likely
to be achieving the stage of formal operations,
the mean stage for humans. After adolescence,
and mainly between the ages of 60 and 80 years,
the pattern reverts, showing a decrease in alpha
energy. This has been suggested to be the re-
sults of interference of neurological degenera-
tive conditions (Klimesch, 1999). Furthermore,
changes in alpha and theta power also show a

positive age-related correlation. Delta and theta
bands’ power decrease with age, while alpha
increases. Interestingly, these changes are also
consistent when comparing children without
learning disabilities with children with learning
disabilities or neurological disorders, pointing
toward the relationship between the power
bands and cognitive performance (Klimesch,
1999). Taken together these findings, the alpha
band has been associated with cognitive perfor-
mance, mainly speed of processing, memory
(Fischer, 2008) and attention (Klimesch, 1999),
as well as with general cognitive performance
throughout life (Fischer, 2008; Hudspeth & Pri-
bram, 1990; Klimesch, 1999). During problem
solving, synchronization and desynchronization
of alpha power have been studied. Lower-alpha
desynchronization has been systematically as-
signed to reflect attentional resources during
problem solving; upper alpha has been linked to
the processing of sensory-semantic information,
whereas theta synchronization also appears to
be correlated with working memory or episodic
memory performance (Klimesch, 1999).

Both MRI and sEEG data provide strong
evidence toward a shared developmental path
inscribed in the brain. However, the majority of
existing studies overlook interindividual differ-
ences in cognitive performance. Actually, a
closer look to these studies reveals that interin-
dividual differences play an important role. Su-
pekar et al. (2013) showed that although there is
a common hippocampal-prefrontal connectivity
pattern underlying learning and skill acquisition
in several domains, irrespectively of individual
differences, performance gains range from 8%
to 198%. Moreover, Klimesch (1999) stated
that interindividual variability plays as large an
effect as that of age-related changes. Besides,
within the frequency bands, there is a high
variability, too, in how to define subbands. This
shows how variable performance gains might
be under the same experimental circumstances,
which, again, should not be overlooked. Further
limitations of existing studies concern the fact
that these comprise unsystematic sets of tasks,
which results in outcomes contaminated by
task-specific variance. In other words, they do
not present a sequence of tasks with measured
difficulty or processing load. This does not al-
low to extrapolate the results with confidence to
other domains. Still a limitation of existing
studies, they restrict their object of analysis to

36 LEITE, BARKER, AND LUCAS

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



an early period in life, mainly in neuroimaging
studies. This impedes from taking conclusions
in regards to the development of higher-order
cognition and falls apart of the question we
deem to answer: What limits stage?

Hence, we here propose that a different can-
vas is necessary to uncover the factor that loads
on stage variance and that ultimately answers
what limits stage. We propose to look at inter-
individual differences in development, upon
which to observe neural changes. In fact, al-
though development and brain maturation yield
significant similarities across subjects, there is
also strong evidence of individuals displaying
different rates of development (Commons, Li,
et al., 2014) and different mosaics of a devel-
opmental path (Abellán, Calvo-Llena, &
Rabadán, 2015), not to mention the differences
that show up in populations with disabilities,
neurological disorders, or both. Hence, we pro-
pose to conduct a methodology that allows us a
comparison between neural activations of sub-
jects who perform at different stages of devel-
opment. This will allow us to extract not only
the shared properties of problem solving in the
brain, with problems, solutions, and compe-
tence operationalized by an order of complex-
ity, but also to extract the differentiators.
Namely, the percent signal activation in regions
of interest (fMRI) and power and energy of
frequency bands (sEEG). In order to model in-
terindividual variability from these data, we
propose to extract what we call the saturation
index (SI) for each physiological measure,
which represents the processing load along the
developmental path of subjects. Ultimately, we
expect that the SI of each measure will be
correlated and a general SI can be extracted
from it. SI is then a within-subjects measure that
intends to model the individual dynamics of
development. We expect that the potential to
achieve a certain developmental stage can be
characterized by a specific SI, as if the SI is a
dynamic neural signature underlying, or carry-
ing, development. Basically, we consider that
the SI will face a faster relative increase for
lower stage subjects than for higher-stage sub-
jects, reflecting that an increase in task com-
plexity requires higher cognitive resources for
lower-stage subjects than for higher-stage sub-
jects. The SI is, in fact, closely related to the
functional meaning of the index of harmony
(HI) calculated for assessing and predicting de-

velopmental problems from birth to adoles-
cence in a 10-domain general model of child
development (Abellán et al., 2015). Abellán et
al. (2015) also considered that the idea of a HI,
an individual index of development, is “funda-
mental to give independence to the comparison
of individual development in relation to statis-
tical norms, since it permits each case to be
contrasted with itself.” Further on, the SI is the
numerical indicator that will allow this study to
see continuation in different fields, such as ar-
tificial intelligence and behavioral prediction.
Hence, we believe that the extraction of an SI as
one of the major expected achievements of the
present proposal, along with uncovering the re-
gions that are differentially activated in the face
of different stages of development, as is shown
by some important literature findings.

In one relevant study addressing this issue of
interindividual variability (Lee et al., 2006),
subjects’ IQ was measured as a general cogni-
tive capacity (g-capacity), splitting the sample
into two groups— g-superior and g-average
subjects. Tasks similar in shape but differing in
g-loading were administered to each group of
subjects, while their patterns of brain activation
were measured through fMRI. A brain signature
was found in both groups concerning bilateral
activations in lateral prefrontal, anterior cingu-
late, and posterior parietal cortices. These g-
task-related neural substrates were most likely
to rely on the frontoparietal network that was
previously reported to constitute the neural
bases for fluid reasoning and working memory
(Lee et al., 2006). A brain signature was also
found between groups, with the superior g-
group showing much greater percent signal
changes of the regions of interest than the av-
erage g-group. The most significant gap be-
tween groups was in the posterior parietal cor-
tex. These findings are further supported in the
literature by a recent result obtained from the
Neurodevelopment of Reasoning Ability
(NORA) study (see Wendelken et al., 2016). It
confirmed the involvement of the frontoparietal
network in detecting differential reasoning abil-
ities. The authors found an increased connectiv-
ity between the rostro lateral prefrontal cortex
and the inferior parietal lobule in the mature
reasoning system, in opposition to an immature
neural system. The frontoparietal network is
also at play when differences are being mea-
sured for EEG power spectra. Namely, delta and
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theta frequency bands decrease in power with
age, while alpha frequency band power in-
creases, with this increase starting at posterior
derivations and ending at more anterior record-
ing sites (Klimesch, 1999), which is consistent
with recent big data analysis (Taylor, Hobbs,
Burroni, & Siegelmann, 2015). Recently, fron-
toparietal networks have been associated to
higher-order cognitive functions majorly be-
cause they underlie the representation and man-
agement of concepts with the highest levels of
abstraction (Taylor et al., 2015).

From the findings reported above, we deduce
that the involvement of the hippocampal-
prefrontal network occurs when considering
longitudinal designs for fMRI data, irrespec-
tively of interindividual differences. This net-
work is involved in a gradual change in prob-
lem-solving strategies, from procedural to
retrieval based, which occur independently of
the rate of learning. However, if the focus shifts
to interindividual variability of reasoning abili-
ties and differential learning rates, the regions
associated with differential activation are no
longer observed in hippocampal activation.
These are reported to rely on the frontoparietal
network instead (Lee et al., 2006; Wendelken et
al., 2016), which is consistent for both fMRI
and sEEG data.

Our hypotheses build on these findings. The
first four hypotheses stand for characterizing
patterns of brain activation across stages and
tasks. For MRI data, we expect that different
stages will show up in the brain as differential
patterns of activation in the frontoparietal net-
work, namely in the prefrontal cortex (PFC) and
in the posterior parietal cortex (PPC). We ex-
pect a positive correlation between activation in
these regions and an increase in the complexity
of tasks (H1). We also hypothesize that connec-
tivity between PFC and PPC is positively cor-
related with stage (H2). We still hypothesize
that higher-stage subjects show a decreased ac-
tivation in the regions of interest when com-
pared to lower-stage subjects, when performing
the same task, which order of complexity
should be equal or lower than the order of
lower-stage subjects (H3). For sEEG data, we
hypothesize that tonic alpha power increases
and theta decreases with the complexity of the
task and that phasic changes also show a higher
theta synchronization (H4). The remaining four
hypotheses are concerned with modeling the SI.

Fifth, for MRI data, we hypothesize that higher-
stage individuals show a slower increase in ac-
tivation in the regions of interest while solving
tasks with increasing order of complexity, than
do lower-stage subjects (H5). We also hypoth-
esize that higher-stage subjects show a more
pronounced increase in the connectivity be-
tween the regions of interest than lower-stage
subjects (H6). For sEEG data, we hypothesize
that the increase in alpha and the decrease in
theta power along increasingly complex tasks is
significantly more pronounced in lower-stage
subjects than in higher-stage subjects (H7). Fi-
nally, we hypothesize that during problem solv-
ing, theta synchronization is more pronounced
along increasing complexity tasks in lower-
than in higher-stage subjects (H8), reflecting a
more effortful working memory in the first
group.

Goals and Objectives

In sequential order, it is our first objective to
confirm existing findings by operationalizing
reasoning abilities as the order of complexity
that defines stage of development. Our first four
hypotheses stand for characterizing mappings
of brain activation, both with MRI and sEEG
data, which we expect to confirm what has been
shown in previous studies. It is our following
objective to answer why, not how, some indi-
viduals achieve higher developmental stages
than others and to look for this answer through
the neural correlates underlying stage of perfor-
mance. We answer this objective through cal-
culating a saturation index that informs the pro-
gression of processing load along the problem
solving of increasingly complex tasks. This will
be done in the remaining four hypotheses of this
study. It is still our objective to use the results of
this study to improve the behavioral predictive
Model of Hierarchical Complexity and to con-
tribute for the development of a connectionist
model that attempts to simulate the growth in
complexity of reasoning abilities, which will be
done within the scope of future work.

Method

Independent and Dependent Variables

We operationalize reasoning abilities by as-
sessing stage of development of participants, as
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is determined by the Model of Hierarchical
Complexity. The MHC has a high predictive
power when applied to behavioral analysis (Giri
et al., 2014); it measures the difficulty of tasks
to avoid the interference of task variance noise
in data analysis; it is in agreement with further
mathematical behavioral developmental models
that correlate age and stage (Wendelken et al.,
2016); and it has recently shown that the ma-
jority of intelligence tests fail to detect postfor-
mal capacity (Commons, Featherston, Chen,
Toth-Gauthier, & Day, 2016). High IQ score
probably represents Formal Stage and System-
atic Stage 12 performance. The low IQ repre-
sents Concrete Stage 9 and Abstract Stage 10
performance. IQ does not measure Metasystem-
atic Stage 13; however, given the existing data
on the progression of stage (Commons, Miller,
et al., 2014) if an adolescent is performing at the
Systematic Stage 12, it is highly likely that the
person will move up to Metasystematic Stage
13 (Featherston et al., in press).

For these reasons, we believe that if previous
studies found consistent findings given the ma-
turity of reasoning abilities, irrespectively of the
operationalization criteria, we will also find
these differences, concluding that our method-
ology is sensitive enough to identify differences
in stage. Stage of development will be assessed
through instruments developed so far by the
Model of Hierarchical Complexity. As depen-
dent variables, we measure MRI and sEEG cor-
relates of task performance.

Experimental Design

This study comprises a cross-sectional exper-
imental design, where the scope of observations
will be restricted to abstract, formal and post-
formal stages of development, namely system-
atic and metasystematic. For modern humans,
the range of stages in intact adults is from
Abstract Stage 9 to Postformal Stages 11 and
12. The mean stage of performance has been
shown to be the formal operational Stage 10
(Commons, Li, et al., 2014). Stages beyond
formal operations (Stage 10), including system-
atic (Stage 11), metasystematic (Stage 12), par-
adigmatic (Stage 13), and two other very rare
stages, have also been described by the Model
of Hierarchical Complexity (Commons, Li, et
al., 2014). Hence, according to the MHC, inter-
individual variability in attaining higher-order

stages is only pronounced when we move up to
formal stages and beyond (Commons, Li, et al.,
2014). Subjects will be selected for the study
based on their stage of development, irrespec-
tively of educational background. Experimental
groups will match in gender and age.

Hypotheses Testing

Data analysis procedure will be based on
representation similarity analysis (Kriegeskorte,
Mur, & Bandettini, 2008). H1, H2, H3, and H4
are tested to confirm previous findings in what
concerns the relationship between the increas-
ing of reasoning abilities and the emergence of
differential patterns of brain activation. From
this confirmation, we demonstrate that opera-
tionalizing reasoning abilities as stage of devel-
opment does not introduce an uncontrolled bias
in posterior data analysis. In the following hy-
potheses H5, H6, H7, and H8, we attempt to
model how mappings of brain activity (repre-
sentation mappings) progress along the perfor-
mance in increasingly complex tasks for a spe-
cific group of subjects. Afterward, we will
compare the representation mappings that show
up during problem solving in consecutive com-
plexity tasks, and to that pairwise comparison
we will call the differential transition mappings.
Representation mappings correspond to each
cell on Table 1 and differential transition map-
pings correspond to the arrows transiting from
one cell to the other. Differential transition
mappings underlie the functional meaning of
the saturation index.

Limitations

Two limitations are attached to this experi-
mental design. First, we cannot know if the
subjects who compose each experimental group
have already attained their highest stage; we can
only be aware that their neural architecture,
when compared to matching age subjects, is
higher. Given that stage develops as log2(age)
(Commons, Miller, et al., 2014), we assume that
we have a representative sample of the pro-
cesses underlying stage of development. Still, in
order to overcome this limitation, one possibil-
ity is to set a lower age limit, also based on the
evidence that stage progresses as log2(age)
(Commons, Miller, et al., 2014); however, this
solution is not free from methodological prob-
lems, as setting a lower age limit will possibly
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introduce the interference of cognitive degener-
ation, which might begin occurring at the age of
40 (Klimesch, 1999). The second limitation of
this research proposal concerns the fact that we
are not evaluating how the neural architecture
changes in the face of stage transition, which
would be the ideal scenario, but only possible
through capturing a once in a lifetime event. As
such, we must restrict our observations to eval-
uate how the neural architecture changes in the
face of different complexity tasks and assume
that these changes, or adjustments, somehow
remain after a new stage has been achieved,
similarly to the remaining of a phylogenetic
process of evolution and development pervad-
ing in the organism.

Innovation, Application, and Future Work

Our research question differentiates this
study from others that have been conducted in
the field of developmental psychology and cog-
nitive neuroscience. This is a relevant topic of
research that has never been addressed. Besides
serving the fields of psychology and cognitive
neuroscience for obvious reasons, it further
serves other branches of application fields. For
instance, the field of behavioral assessment and
prediction and artificial intelligence. However,
before proceeding in future applications, it is
worth mentioning that this study requires fur-
ther empirical data to attest the external validity
of the saturation index.

Behavioral Prediction

The Model of Hierarchical Complexity is a
behavioral assessment theory of development
with a high predictive power (r ! .991) (Giri et

al., 2014). Mean stage is determined as the
logarithmic function of age; hence, younger in-
dividuals attaining higher stages than their
counterparts are assumed to achieve higher
stages in the future. However, there is no clear
predictive evidence of this fact nor there is
evidence of a biological mechanism controlling
it. Because this study is proposed to result in the
extraction of the SI—an index that informs
about the highest stage to be achieved—we are
closer to further improve the predictive capabil-
ity of the MHC in what concerns later stages of
life.

One specific area of application area of ap-
plication concerns the development of educa-
tional and pedagogic practices more adequate to
people’s general cognitive capacity. If our ex-
pected results are ultimately proven, the SI
would be a quantitative indicator of differential
educational strategies. With a new educational
approach set up, we can initiate the reverse
research line—whether adequate educational
practices actually change the development of
the brain along the lines we suggest. Our posi-
tion is similar to previous research on modeling
general properties of development along with
individual differences, with the goal of deter-
mining how the individual developmental path
can be improved and optimized (Abellán et al.,
2015). The same principle applies for hierarchi-
cal complexity measurements for assessing how
and where employees best fit into organizations
based on their task performance (Commons &
Robinett, 2013). This is important because in
many societies in the world, especially among
certain sectors, there is a belief that there are no
biological differences underlying how smart
someone is. People associate differences with

Table 1
Representation and Differential Transition Mappings

Group

Task Abstract Formal Systematic Meta-systematic

Concrete

Abstract

Formal

Systematic

Meta-systematic

40 LEITE, BARKER, AND LUCAS

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



education and motivation. Hence, people who
are not hardwired to achieve the highest stages
are possibly treated unfairly because the expec-
tations for them are unrealistic. If we find bio-
logical differences, it may inform interpreta-
tions of behaviors that support a more ethical
and fair society.

A second area of application might also con-
cern psychiatry and law. Our results could add a
new lens for verifying that observed arrested
development of the interpersonal domain has
hierarchically complex neural correlates of
brain behavior that correspond to observed hi-
erarchical complexity performance. This can in-
form both psychiatry and law in their respective
efforts to adequately approach behavioral defi-
cits and crime to two ends. The first is to im-
prove and correct maladaptive or criminal be-
havior (Commons & Miller, 2011) by applying
the above mentioned renewed educational prac-
tices. Once again, appropriate approaches could
be informed according to the saturation index
calculated for each individual. The second is to
predict and prevent future criminal behavior.
This would be based on the brain signatures of
individuals who carry some neurological limi-
tation and which might be cause, under certain
conditions, to suggest a higher probability for
social threat. For instance, people with Asperger
syndrome are considered the most dangerous
people because they show no social perspective
taking. The model for predicting crime would
be multiplicative, with stage, neurological dis-
order and social perspective taking interacting
together (Commons & Giri, 2016) and all being
extracted from the brain. Representation map-
pings would inform about the relative threat
people represent at present as they convey in-
formation about current stage of development;
the SI would inform about the social threat they
might represent in the future, given the stage
they are hardwired to achieve.

Computational Cognition—The
Hierarchical Stacked Neural Networks
Model

The MHC is also the grounding theory for a
computational model of cognitive development,
called “Hierarchical Stacked Neural Networks.”
This is a neural-networks algorithm (computer
software) that simulates successive behavioral
stages of development of individuals. To allow

a progression in stage (or stack), it adds a de-
gree of complexity to existing neural network
models, making it able to meta-learn — that is,
to learn about what it is learning. It may reflect
on the errors it makes in learning and correct
them through downward “reflections,” which
reversely accompany the process of “reflexive
abstraction.” There is a conceptual isomorphism
between the MHC and the algorithm, which
stands for ascribing human developmental abil-
ities to Artificial Intelligent systems, not yet
seen in the artificial intelligence field (Com-
mons, 2008). In the artificial model, information
flows continually from the lower-order stack to
the higher-order stack, in the direction of in-
creasing complexity.

The order n outputs of stack s will be fed as
inputs to stack s " 1, which will generate order
n " 1 outputs. The space of outputs along the
network is an evolving self-organizing one that
dynamically gives room for increasingly com-
plex actions. Higher-order outputs are formed
by combining and coordinating lower-order
ones, in a nonarbitrary way. Each stack consists
in a multilayer neural network with a particular
structure that makes it generate the hierarchical
complex actions of the particular stage it simu-
lates. In the artificial model, each higher-order
stack organizes and combines lower-order out-
puts, in accordance to the inputs it receives
(Commons, 2008; Commons & White, 2006/
2009).

In a Neural Networks model, the topology (or
connectivity pattern between units) partially deter-
mines the learning and generalization capabilities,
similarly to what happens within the brain. Ac-
cording to our hypothesis, if stages of develop-
ment are imprinted in the brain and new stages
foster the emergence of new patterns, then each
new stack will comprise the autonomous emer-
gence of a new pattern, too. Each stack accounts
for representation mappings; stack transition ac-
counts for differential transition mappings. Hence,
for the complete solution of the algorithm, the
three branches of systems neurosciences must be
combined—brain activity measurement, behav-
ioral measurement, and computational modeling
(Kriegeskorte et al., 2008). The learning mecha-
nism of the model will be partially determined by
the SI as a threshold that informs the system if
there will be sufficient energy resources to accom-
modate a higher-order layer of knowledge. Com-
putationally, the SI is most likely to be operation-
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alized as a measure of entropy of the system,
which is assumed to be proportional to the SI.

Conclusion

The primary goal of this proposed study is to
find the biological correlates that explain and
limit stage, which has never been addressed
before. Existing studies point toward the bio-
logical underpinnings of skill acquisition, learn-
ing, and development. However, they carry
some limitations and lag behind addressing the
crucial aspect of individual differences in per-
formance gains and cognitive capacity. Those
that address this issue are far from suggesting
that biology might actually limit cognitive ca-
pacity. This is what we aim to contribute to.

Through MRI and sEEG data, we propose to
extract representation and differential transition
brain activation mappings, and to further calcu-
late a SI. From this numerical indicator, we
expect to have a predictor of the highest stage
achieved, as the SI is supposed to inform about
the processing load that each increasingly com-
plex task requires. Further work concerns the
external validation of the SI in the scope of
behavioral prediction, as well as its inclusion in
the development of a connectionist algorithm
called the Hierarchical Stacked Neural Net-
works model that aims to ascribe cognitive de-
velopmental capabilities to artificial intelli-
gence.
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