
Requests for reprints should be sent to Michael Lamport Commons, 234 Huron Ave., Cambridge, MA 02138, 
USA, e-mail: commons@tiac.net.

JOURNAL OF APPLIED MEASUREMENT, 9(2), 182-199

Copyright© 2008

Using Rasch Scaled Stage Scores to Validate Orders  
of Hierarchical Complexity  

of Balance Beam Task Sequences

Michael Lamport Commons
Harvard Medical School

Eric Andrew Goodheart
Dare Institute

Alexander Pekker
University of Texas, Austin

Theo Linda Dawson
Hampshire College

Karen Draney
University of California, Berkeley

Kathryn Marie Adams
Harvard Medical School

These studies examine the relationship between the analytic basis underlying the hierarchies produced 
by the Model of Hierarchical Complexity and the probabilistic Rasch scales that places both partici-
pants and problems along a single hierarchically ordered dimension.  A Rasch analysis was performed 
on data from the balance-beam task series.  This yielded scaled stage of performance for each of the 
items.  The items formed a series of clusters along this same dimension, according to their order of 
hierarchical complexity.  We sought to ascertain whether there was a significant relationship between 
the order of hierarchical complexity (a task property variable) of the tasks and the corresponding 
Rasch scaled difficulty of those same items (a performance variable).  It was found that The Model of 
Hierarchical Complexity was highly accurate in predicting the Rasch Stage scores of the performed 
tasks, therefore providing an analytic and developmental basis for the Rasch scaled stages.
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Introduction

The Model of Hierarchical Complexity

The Model of Hierarchical Complexity 
(Commons and Miller, 1998; Commons and 
Pekker, in press; Commons and Richards, 1984; 
Commons, Trudeau, Stein, Richards, and Krause, 
1998) equates stage of performance on a task 
to the order of the hierarchical complexity of 
the tasks that the performance successfully ad-
dresses. The order of hierarchical complexity 
is measured by the number of recursions that the 
coordinating actions must perform on a set of 
primary elements. Recursion refers to the process 
by which the output of the lower-order actions 
forms the input of the higher-order actions. This 
“nesting” of two or more lower-order tasks within 
higher-order tasks is called concatenation. Each 
new, task-required action in the hierarchy is one 
order more complex than the task-required actions 
upon which it is built.

Formally, for a task to be more hierarchically 
complex than another, the new task must meet 
three requirements: First, a more hierarchically 
complex task and its required action is defined in 
terms of two or more less hierarchically complex 
tasks and their required task actions. Second, the 
more hierarchically complex task organizes or 
coordinates two or more less complex actions; 
that is, the more complex action specifies the 
way in which the less complex actions combine. 
Third, the coordination of actions that occurs 
has to be non-arbitrary. It cannot be just any 
chain of actions. Each new, task-required action 
in the hierarchy is one order more complex than 
the task-required actions upon which it is built 
(Commons, et al., 1998).

This hierarchy has been shown to account 
for performance in a variety of different domains, 
including: Physics tasks (Inhelder and Piaget, 
1958: balance beam and pendulum (Commons, 
Goodheart, and Bresette, 1995); Kohlberg’s moral 
interviews (Armon and Dawson, 1997; Dawson, 
2000); Views of the “good life” (Danaher, 1994; 
Dawson, 2000; Lam, 1995); Loevinger’s Sen-
tence Completion task (Cook-Greuter, 1990), 
workplace culture (Commons, Krause, Fayer, 

and Meaney, 1993); Workplace organization 
(Bowman, 1996a, 1996b); Political development 
(Sonnert and Commons, 1994); Therapists’ Deci-
sions to report patient’s prior crimes (Commons 
et al., 1995); and Relationships between more and 
less powerful persons such as doctors and patients 
(Commons and Rodriguez, 1990, 1993). We were 
particularly interested in examining performance 
on the balance-beam task series. Note that such 
an analysis has been performed for the Laundry 
Causality Series that is similar to Inhelder and 
Piaget’s (1958) pendulum problem, and for the 
Counselor-Patient Informed-Consent series. The 
results were very similar.

In order to examine the complexity of such 
tasks, it is useful to illustrate the mathematical 
complexities that define The Model of Hierarchi-
cal Complexity. For example, consider the action 
of distributivity. Distributivity is the property of 
addition and multiplication on the real numbers 
that ensures that a × (b + c) = (a × b) + (a × c). 
Of course distributivity also plays a fundamen-
tal role in more general contexts, such as the 
complex numbers and the definition of rings in 
modern algebra. The distributive law serves as 
a motivation for a newer form of complexity, 
called hierarchical complexity, which we aim to 
describe in this paper.

In particular, the distributive law suggests 
that the task of evaluating a × (b + c) is more 
complex than the task of evaluating (a + b) + c 
or even the two-part task of first evaluating a + 
b and then evaluating c × d. The evaluation of 
(a + b) + c is no more complex than addition, 
performed either as (a + b) + c or a + (b + c); the 
organization of the two actions of addition is ar-
bitrary. Similarly, in the two-part task, evaluating 
a + b and then c × d yields the same result as first 
evaluating c × d and then a + b. Both of these are 
chain actions. On the other hand, the evaluation of 
a × (b + c) requires a non-arbitrary organization of 
addition and multiplication, or, equivalently, the 
distributive law, and is therefore more complex 
than addition or multiplication. In modern alge-
bra, the non-arbitrary coordination of addition and 
multiplication leads to the definition of rings, and 
the expressions in ring theory are usually more 
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complex than the expressions in group theory 
(which involve only one operation).

We refer to addition and multiplication as 
actions, a term that is commonly used by devel-
opmental psychologists to refer to events that 
produce outcomes or, equivalently, accomplish 
certain tasks. The study of tasks appears in psy-
chophysics (a branch of stimulus control theory 
in psychology) (Green and Swets, 1966; Luce, 
1963) and in artificial intelligence (Goel and 
Chandrasekaran, 1992), and in general, actions 
may be attributed to organisms, computers, or oth-
ers. Clearly actions may be combined to produce 
new, more complex actions (Binder, 2000). Our 
goal is to describe how to measure the complex-
ity of an action and to relate it to the complexity 
of other actions.

In the literature, two types of complexity 
have been identified: horizontal (traditional) and 
vertical (hierarchical) (Commons et al., 1998). 
(For a review of these definitions, see, e.g., 
Wolfram, 2002, and Kauffman, 1993). Roughly 
speaking, in traditional complexity, the complex-
ity of an action is determined by the number of 
times a specific subaction is repeated. In hierar-
chical complexity, the complexity of an action is 
determined by the non-arbitrary way in which the 
subactions are organized. In particular the order 
of hierarchical complexity of an action is one 
greater than the order of hierarchical complexity 
of its subactions, provided they are organized in 
a non-arbitrary way.

To illustrate one difference between tradi-
tional and hierarchical complexity, consider the 
action A of evaluating 1 + 2 and the action B of 
evaluating (1 + 2) + 3. The traditional complex-
ity of A is smaller than the traditional complexity 
of B since the action of addition is executed less 
often in A than in B; on the other hand, since A 
differs from B only in how many times addition 
is executed, but not in the organization of the 
addition, A and B have the same hierarchical 
complexity. This example shows that the two 
types of complexity are independent and incom-
mensurate.

The axioms in the next three sections build 
on Piaget (e.g., Inhelder and Piaget, 1958) and 

Piaget’s intellectual descendants (e.g., Campbell, 
1991; Campbell and Bickhard, 1986; Tomasello 
and Farrar, 1986); they are also fundamental to 
stacked neural networks (Commons and White, 
2003). Other applications include programmed 
instruction in the discussion of prerequisites (Hol-
land and Skinner 1961) and precision teaching in 
the discussion of combinations being built out of 
elements (e.g., Commons and Richards, 2002; 
Kubina and Morrison, 2000). Although the model 
itself has been previously described (Commons 
et al., 1998), the formal, axiomatic version is 
presented here.

Actions

We begin by defining the fundamental terms. 
In a given system, there exist certain tasks that 
are to be accomplished. These tasks are accom-
plished via task-actions. Formally, a task-action, 
often abbreviated simply as an action, is defined 
inductively. There exists a unique simple ac-
tion Ã, which is the simplest action possible 
in a system. This is in agreement with Luce’s 
choice theory (Luce, 1959). Every other action 
A consists of at least two (and possibly infinitely 
many) previously defined actions and a rule for 
organizing those previously defined actions. Thus, 
every nonsimple action A is an ordered pair A 
= ({A1,…}, R} where the first component is a 
multi-set of at least two previously defined actions 
Ai composing A and R is the rule for organizing 
those actions.

There are two categories of rules: chain rules 
and coordination rules. In a nonsimple action A = 
({A1, …}, R), a chain rule R is simply a sequential 
execution of the actions Ai in some order, but the 
order of the executions does not matter. That is, 
regardless of the order in which the subactions are 
executed, the result of A is achieved. A coordina-
tion rule, on the other hand, requires the execution 
of the actions Ai in some specific, non-arbitrary 
order, so that the order does matter.

We now formalize these notions. Suppose 
first that A consists of finitely many subactions, 
i.e., A = ({A1, A2, …, An}, R). Given a permuta-
tion σ = (i1, i2,…, in) of the numbers 1, 2,…, n, the 
execution of the Ai according to σ is simply
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1 2
, , , .

ni i iA A A

In this notation, the rule R is a chain rule if the 
outcome of A is the same for all n! permutations 
of the numers 1, 2,…, n. That is, the outcome of 
the order of actions,

1 2
, , , .

ni i iA A A

is the same for all permutations (i1 ,i2,…, in) of 
1,2,…, n. The rule R is a coordination rule if this 
is not the case; i.e., if there exists at least one 
permutation τ = (j1, j2,…, jn) of the numbers 1, 
2,…, n so hat the execution of the actions Ai ac-
cording to τ, i.e.,

 1 2
, , , ,

nj j jA A A

is not the same as the outcome of the action A. 
Hence, the outcome of Ai is given by at least one, 
but not all, permutations of the Ai. We extend 
similarly to the cases where A consists of infinitely 
many actions.

We summarize these definitions as the first 
three action axioms; we will refine them in the 
following section.

(A1)	 There exists a simple action Ã.
(A2)	 Every action A is either simple (so 

A = Ã,) or composed of at least two 
previously defined actions {A1,…} 
and a rule R for organizing those 
actions (so A = ({A1,…}, R)).

(A3)	 Each rule is either a chain or a co-
ordination.

To motivate the definition of hierarchical 
complexity in the next section, we will rely on 
the following example.

Example 1. Let + and × denote the traditional 
addition and multiplication on the real numbers, 
and let  and  denote the traditional addition and 
multiplication of variables (having values, say, in 
the real numbers). Then, consider the following 
four actions. 

(a)	 A = ({+, ×}, RA) consisting of 1 + 2 
(i.e., adding the numbers 1 and 2) 
followed by 3 × 4 (i.e., multiplying 
the numbers 3 and 4). Clearly, the 
order in which the two subactions 
are executed does not matter: add-

ing 1 and 2 and then multiplying 
3 and 4 yields the same results, 
namely 3 and 12, as multiplying 3 
and 4 and then adding 1 and 2. Thus, 
A is a chain action.

(b)	 B = ({+, }, RB) consisting of 1 + 2 
followed by x  y. Again, the order 
in which the two subactions are 
executed does not matter: adding 
1 and 2 and then multiplying x and 
y yields the same results, namely 3 
and xy, as multiplying x and y and 
then adding 1 and 2. Thus, B is also 
a chain action.

(c)	 C = ({+, ×}, RC) consisting of the 
expression 2 × (3 + 4). This is not 
a chain, for the order of the subac-
tions matters: if we multiply 2 and 
3 first and then add 4, we get 10, not 
14, which is the answer dictated by 
rule RC (i.e., adding 3 and 4 first and 
multiplying the result by 2). Thus C 
is a coordination, not a chain.

(d)	 D = ({, }, RD) consisting of the 
expression x  (1  2). Notice that 
since the expression involves real 
numbers and variables, we must 
necessarily use  and  and not sim-
ply + and ×. In particular, because 
the distributive law dictates that

	 x  (1  2)= (x  1)  (x  2),
	 we cannot replace  by +. This 

observation will be important in 
the next section. As in the previous 
case, it is clear that D is a coordina-
tion action.

(e)	 E = ({, }, RE) consisting of the 
expression x  (y  z). This is ex-
actly the same as (c) but at a more 
abstract level, and is, therefore, a 
coordination rule.

Hierarchical Complexity

To each action A we wish to associate a 
notion of that action’s hierarchical complex-
ity, h(A). Since actions are defined inductively, 
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so is the function h, known as the order of the 
hierarchical complexity. For a simple action A, 
h (A) = 0. For a non-simple action, A = ({A1,…}, 
R), we have to consider several cases. To get an 
intuitive idea, we analyze the complexity of the 
actions in Example 1.

Example 1 (Continued). Let m be the hi-
erarchical complexity of + and ×, the traditional 
addition and multiplication on the real numbers, 
and let n be the hierarchical complexity of the 
operations  and  , the traditional addition and 
multiplication of variables. Intuitively we under-
stand that m < n.

(a)	 Action A is a chain. The order in 
which the sub-actions forming the 
chain are executed can be changed 
without impacting the product of 
the actions. Therefore, executing A 
does not require any skill beyond 
the execution of each of the subac-
tions individually.

(b)	 Similarly, B is a chain rule, but 
executing B requires being able to 
multiply at the abstract level (which 
is more complex than adding at the 
primary level), and so h(B) = max 
((h(+), h()) = h() = n. Notice that 
unlike action A, action B consists of 
subactions of different complexi-
ties.

(c)	 Observe now that action C coordi-
nates two subactions of the same 
order, namely m. Since the order 
in which the two subactions are 
executed is nonarbitrary, the hier-
archical complexity of this action 
is higher than the complexity of its 
subactions: h(c) > max(h(+), h(×)) 
= m.

(d)	 As we remarked in Example 1, 
it may seem at first that action D 
coordinates two actions of different 
orders, + of lower order and  of 
higher order. However, due to the 
distributive law, it actually coordi-
nates two actions of the same order, 

i.e., n. In particular, we observe that 
a coordinating action, at least in 
arithmetic, necessarily coordinates 
subactions of equal order. As in the 
previous case, we see that h(D) > 
max(h(), h()) = n.

(e)	 Lastly, as in (c), it is clear that h(E) 
> max (h (), h ()) = n.

This analysis illustrates that the only way to 
raise hierarchical complexity is by coordinating 
actions of lower complexity. Moreover, coordina-
tion requires the subactions to be of equal orders. 
In light of Example 1, we now state the hierar-
chical complexity axioms which incorporate the 
action axioms (A1) - (A3).

Hierarchical Complexity Axioms

(HC1)	 There exists a simple action Ã, and 
h (Ã) = 0.

(HC2)	 Every nonsimple action A = ({A1, 
…}, R) is either a chain of at least 
two previously defined actions 
of arbitrary orders of hierarchical 
complexity or a coordination of at 
least two previously defined actions 
all of which have the same order of 
hierarchical complexity.

(HC3)	 For a nonsimple action A =({A1, 
…}, R), h(A) = maxi h(Ai ) if A is a 
chain, and h(A) = h(A1) + 1 if A is a 
coordination. 

Notice that by Axiom (HC2), a coordination 
action A = ({A1, …}, R) necessarily coordinates 
subactions of equal orders of hierarchical com-
plexity (i.e., h(A1) = h(A2) = …), and so the order 
of hierarchical complexity of A is one higher 
than the order of hierarchical complexity of all 
its subactions. In particular, in the last equation in 
Axiom (HC3) we may replace A1 by any subaction 
of A and still obtain the same result.

As a consequence of these axioms, we see 
that if we let A denote the collection of all ac-
tions in a given system, then the hierarchical 
complexity is a function h: A → , where  = 
{0, 1,…} is the set of natural numbers (and zero) 
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under the usual ordering. From the properties of 
the natural numbers, we immediately obtain the 
following four essential properties of hierarchical 
complexity.

Consequences of Hierarchical Complexity 
Axioms

(HC4)	 (Discreteness) The order of hierar-
chical complexity of any action is 
a nonnegative integer. In particular, 
there are gaps between orders.

(HC5)	 (Existence) If there exists an action 
of order n and an action of order n 
+ 2, then there necessarily exists an 
action of order n + 1.

(HC6)	 (Comparison) For any two actions 
A and B, exactly one of the follow-
ing holds: h(A) > h(B), h(A) = h(B), 
h(A) < h(B). That is, the orders of 
hierarchical complexity of any two 
actions can be compared.

(HC7)	 (Transitivity) For any three actions 
A, B, and C, if h(A) > h(B) and h(B) 
> h (C), then h(A) > h(C).

In light of Appendix A that describes the 
orders of hierarchical complexity for, among 
others, arithmetic tasks, we can assign the exact 
natural numbers corresponding to the orders of 
tasks in Example 1.

Example 1 (Continued). According to Ap-
pendix A, both + and × have order 7, i.e., primary, 
while  and  have order 9, i.e., abstract.

(a)	 Since A is a chain, h(A) = max (h(+), 
h(×)) = 7, i.e., also primary.

(b)	 Since B is a chain, h(B) =max ((h(+), 
h ()) = 9, i.e., also abstract.

(c)	 Since C is a coordination, h(C) = 
max (h(+), h(×)) + 1 = 8, i.e., con-
crete.

(d)	 Since D is a coordination, h(D) = 
max (h(), h()) = 10, i.e., formal.

(e)	 Again, since E is a coordination, 
h(E) = max (h(), h()) +1 = 10, 
i.e., formal.

Stages

The notion of stages is fundamental in the 
description of human, organismic, and machine 
evolution. Previously it has been defined in some 
ad hoc ways; here we describe it formally in terms 
of the Model of Hierarchical Complexity. Given 
a collection of actions A and a participant S per-
forming A, the stage of performance of S on A 
is the highest order of the actions in A completed 
successfully, i.e., it is

stage(S, A) = max {h(A) | A  A and A com-
pleted successfully by S}.
Thus, the notion of stage is discontinuous, hav-
ing the same gaps as the orders of hierarchical 
complexity. This is in agreement with previous 
definitions (Commons et al., 1998; Commons 
and Miller, 2001).

We will return to the notion of stage in 
the experimental results. Appendix A lists the 
stages described by the Model of Hierarchical 
Complexity.

Measure of Hierarchical Complexity

We define the measure of complexity at or-
der n, denoted by ϕn, as the minimum number of 
simple actions required to complete an action of 
order n. By axioms (HC2) and (HC3), an action 
of order n organizes at least two actions of order 
n – 1, each of which in turn organizes at least two 
actions of order n – 2, and so forth, until we reach 
the lowest-order, simple actions. Consequently, 
given the inductive definition of the hierarchical 
complexity orders, it is not surprising that ϕn = 
2n. Formally, a zero-order action, consists of at 
least one simple action, so ϕ0 = 1 = 20. For the 
inductive case, suppose ϕn –1 = 2n–1. Because by 
axioms (HC2) and (HC3), an action of order n 
is either a coordination of at least two actions of 
order n – 1 or a chain which includes an action 
of order n (and hence eventually is composed of 
at least two actions of order n – 1), we have ϕn = 
2ϕn–1 = 2n, by induction.

Discerning the relationship between proper-
ties of stimulus inputs and their corresponding 
responses can provide us with a great deal of 
knowledge about how machines, animals and 
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people work. In the field of psychophysics, for ex-
ample, investigations into these types of intercon-
nections has led to advances in our understanding 
of sensory, perceptual, and cognitive processes. 
Naturally, a more comprehensive understanding 
of the properties of inputs facilitates this fruitful 
research into the relationship between stimuli 
and responses. These studies examine how suc-
cessfully The Model of Hierarchical Complex-
ity characterizes the input of the complexity 
of mathematical problems. A successful model 
would explain the developmental trajectory of 
problem solving skills—at least for these kinds 
of tasks over a greater developmental range, in 
greater detail and with more accuracy than now 
exists. This information could possibly aid in 
future research on how individuals may acquire 
more advanced skills for accurately solving these 
problems.

If the Model of Hierarchical Complexity 
described here is accurate in assessing the hi-
erarchical complexity of a task, then a task that 
it orders as highly complex should be more dif-
ficult to perform than a task that it orders as less 
complex. The tasks that are more complex and, 
therefore, difficult should generally be performed 
less successfully than those which are less com-
plex, and therefore, easier among any population 
of individuals, given everything else equal. In this 
study, Rasch measurement models (Bond and 
Fox, 2001; Rasch, 1960), tested the efficacy of 
the Model of Hierarchical Complexity. The test 
examined whether those tasks that fewer people 
in the participant pool could perform were tasks 
of higher levels of complexity in the Model of 
Hierarchical Complexity. More specifically, us-
ing the Rasch model, the tasks administered were 
hierarchically ordered by how many participants 
successfully answered them. The Rasch model is 
especially proficient at making this determination 
because it transforms raw data into unidimen-
sional, abstract, linear, equal-interval scales if the 
data fit the model. Equality of intervals is achieved 
through log transformations of raw data odds. The 
Rasch model is the only model that provides the 
necessary objectivity for the construction of a 
scale that is separable from the distribution of the 
attribute in the persons it measures. If the tasks 

measured on this Rasch scale correspond to the 
same way they were measured on the Model of 
Hierarchical Complexity, the Mode of Hierarchi-
cal Complexity would emerge as a highly effec-
tive way to assess the hierarchical complexity of 
a mathematical problem. 

The Rasch Model

A Rasch model produces an objective, addi-
tive scale that is independent of the distributions 
of the particular items used and of the particular 
participants tested. It can be used to analyze a 
large variety of human sciences data. This model, 
through the use of probabilistic equations, con-
verts raw ratings of items into scales that have 
equal intervals if the data fit the model. Such a 
scale can then be used as a type of objective ruler 
against which to measure the data on items as well 
as on respondents (Andrich, 1988). Statistically 
speaking, this scale will be linear (Wright and 
Stone, 1979). As a result, a change of difficulty 
of an item of 1 logit is the same going from –2 to 
–1 as going from 0 to +1. 

After analyzing data with a Rasch model, a 
number of questions can be answered. First, where 
on the scale does each item fall? In this case, this 
may indicate the measured stage as defined above 
in the section labeled stage, rather than just the 
designated order of hierarchical complexity for 
each of the items. Second, what is the spacing of 
scaled values of the items of differing orders of 
complexity? Third, to what extent do the scaled 
stage values of these items fit on the same scale? 
The answer to these questions will yield a scale 
of stage of the items.  

The Rasch Model and Hierarchical Complexity

The hierarchical complexity model makes 
four predictions that should be evident in real 
world data. First, in interviews that probe for 
stage of performance, the scoring of the stage 
derived from the Model of Hierarchical Complex-
ity should provide the clearest and most reliable 
account among all scoring systems. Second, the 
empirically scaled orders of complexity of tasks 
should match the analytically predicted sequence 
of orders of complexity of these tasks. Third, the 
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empirically scaled orders of complexity of tasks 
of the same type and content should be related by 
a simple unidimensional linear transformation. 
Fourth, the empirically scaled orders of tasks 
should produce gaps due to the natural number 
scale of hierarchical complexity. The first predic-
tion has been verified in Dawson (2002), and so 
we focus on the last three.

We use Rasch analysis (Rasch, 1966; Rasch, 
1960) to test these predictions. (The relationship 
between the Rasch model and conjoint measure-
ment is discussed in Brogden, 1977; Fischer, 
1968; Keats, 1967, 1971; for more on the Rasch 
model as an application of conjoint measurement 
to empirical data, see Young, 1972; Luce and 
Tukey, 1964; and Perline, Wright, and Wainer, 
1979). Suppose we have a collection of tasks 
with hierarchical orders of complexity dj (1 j  
J) and a collection of participants with proclivities 
to answer correctly bi (1 I  J); the parameters 
dj and bi are determined analytically. The Rasch 
model predicts that participant i completes task j 
correctly with probability

( ) ( )
( )

exp
1 .

1 exp
i j

ij
i j

b d
P X

b d

-
= =

+ -

Clearly, the probability that participant i fails to 
complete task j correctly is

( ) ( ) ( )
10 1 1 .

1 expij ij
i j

P X P X
b d

= = - = =
+ -

Justification of Using a Rasch Model

The first assumption of the Rasch model deals 
with the unidimensional nature of the hierarchy of 
items as it has been generated using the Model of 
Hierarchical Complexity. In applying the model 
to development, it is assumed that each task of 
increasing hierarchical complexity should be more 
difficult. The assumptions of the Rasch model also 
include: (1) the performances are drawn from a 
single population with a common set of proficien-
cies and that tasks can be effectively mapped 
onto an interval measurement scale; (2) there are 
sufficiently dense distributions of person proficien-
cies and item difficulties with a correspondingly 
sufficient overlapping of error distributions around 

items (Pelton, personal communication, February 
10, 2005; Pelton and Bunderson, 2003).1 

Expanding on (2), it would be possible 
that the distance between two “adjacent” items 
is so great relative to the sample sizes and the 
error distributions, and that the tails would not 
overlap sufficiently to allow the Rasch model to 
accurately estimate relative positions of items or 
persons on the measurement scale. When this is 
the case the ‘local’ person response patterns (i.e., 
sub-patterns of responses within a hierarchically 
ordered response vector) will be Guttman-like 
(1950), then the second assumption is violated 
and the positioning of items and persons will be 
on an ordinal scale.

It is anticipated that participant data may 
violate the first assumption. If the participants per-
form at different stages, one might consider that 
they really belong to different groups, each group 
reflecting a given stage. Nevertheless, despite the 
possibility of these violations of the assumptions, 
and because of the expected measurement noise, 
Rasch analysis can be used to obtain useful evi-
dence in support of hierarchical complexity (Bond 
and Fox, 2001) as discussed below. Because the 
orders of hierarchical complexity are ordinals and 
have gaps between them, we predict the Rasch 
model estimates may produce gaps in measured 
stage of performance. That is, we might find clus-
ters of Rasch scores of tasks of approximately the 
same hierarchical complexity with a few Rasch 
scaled task scores between them. 

If there was no probabilistic process (no error 
or measurement variance), then the data would 
have a Guttman pattern. From a Rasch perspec-
tive, this would mean that items at each order of 
hierarchical complexity would be at the same 

1  Pelton (personal communication, February 18, 2005) 
and Linacre personal communication (February 19, 2005) 
say that the Rasch model scaled response error variances are 
modeled as heteroscedastic (unequal variances). For a typical 
dichotomous response of probability p of a correct answer, 
the binomial error variance is p(1 – p). Hence, there is the 
assumption that there is a binomial distribution of erroneous 
responses centered above each item that is placed on the true 
measurement scale and that these distributions are unequal 
(heteroscedastic).
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point, with an infinite distance to the next level 
of difficulty. This is also true for person proclivity 
(stage) levels. If items perform exactly the same 
(again, meaning there is no error variance) when 
presented to a sample of persons, Winsteps 
(Linacre, 2004) would not be able to provide 
scale estimates—and would therefore, provide no 
evidence of even a local measurement scale. For 
Guttman scaling to apply, it is the case that the 
orders of hierarchical complexity are sufficiently 
distinct.  Also, the person samples would need 
to be sufficiently dense around the items so that 
they will be placed appropriately on the scale in 
a hierarchical fashion.  Arbitrary gaps (intervals) 
between clusters of Rasch scores would occur 
when there are Guttman-like response vector 
components for the persons who have achieved 
a developmental stage. 

When this type of local discontinuity is 
expected to occur because of theorized develop-
mental shifts, then the Rasch model can confirm 
such, and then subsequently be used to generate 
several independent measurement scales – one for 
each cluster of items within the developmental 
stages (using selected subsets of the data). Rasch 
scaling works for stage data because, even in 
Piagetian stage data, there is always some empiri-
cal departure from an exact stage structure, i.e., 
there is always some error variance.  What could 
be viewed as a flaw in Piagetian theory is used as 
a basis for estimating relatively how far apart the 
stages are on the latent variable. Provided there 
is a useful level of construct relevant noise in the 
observations, Rasch scaling is possible.

Method

Participants

Convenience sampling was used to gather 
121 predominantly Caucasian, middle class par-
ticipants (80 female, 38 male, 3 did not report 
gender), whose ages ranged from 7 to 66 years (M 
= 29.22, SD = 12.98). Participants were given un-
limited time to complete a multiple choice pen and 
paper instrument containing primary, concrete, 
abstract, formal, systematic and metasystematic 
order balance beam problems. 

Instrument

The balance-beam task series is a pen and 
paper instrument that consists of a series of 
multiple-choice problems of increasing hierarchi-
cal complexity. The tasks form a series because 
every higher order task has the lower order task of 
the previous task embedded within it (see Siegler, 
1986; for a review of various pre-formal and 
formal-balance beam tasks). In the series used, 
there were 5 primary order of hierarchical com-
plexity items, 5 concrete order items, 5 abstract 
order items, 9 formal order items, 8 systematic 
order items, and 10 metasystematic order items. 
The instrument is also available in its entirety at: 
http://www.dareassociation.org/.

The following is an example of a concrete or-
der of hierarchical complexity item. The concrete-
order of hierarchical complexity balance beam 
task requires the coordination of two operations. 
First, the total weight on each side of the beam 
must be equal. On one side of the fulcrum, there 
is a single weight. This weight must be balanced 
by a stated weight plus some unknown additional 
weight. The participant determines the unknown 
additional weight by subtracting the stated amount 
of weight (3) from the total (7).

Example:
Choose the number that balances the bal-

ance beam:

•	 The beam is represented by the horizontal 
table.

•	 The middle of the beam is at the 0 point, 
which is indicated by the  symbol.

•	 The numbers to the left and right of the bal-
ance point (fulcrum, 0) on the beam are the 
distances. 

•	 The numbers in the black circles below the 
beam are the added weights.

•	 The value x is the amount of weight needed to 
balance the beam. In the example, the amount 
needed is 4. 
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task requires the coordination of two operations. First, the total weight on
each side of the beam must be equal. On one side of the fulcrum, there is
a single weight. This weight must be balanced by a stated weight plus
some unknown additional weight. The participant determines the unknown
additional weight by subtracting the stated amount of weight (3) from the
total (7).

Example:

Choose the number that balances the balance beam:

• The beam is represented by the horizontal table.
• The middle of the beam is at the 0 point, which is indicated by the 

symbol.
• The numbers to the left and right of the balance point (fulcrum, 0) on

the beam are the distances.
• The numbers in the black circles below the beam are the added weights.
• The value x is the amount of weight needed to balance the beam.  In

the example, the amount needed is 4.

Solution:

The following is an example of a systematic order of hierarchical
complexity item.  The systematic Balance Beam task presents two formal
order balance beams to the participant.  The same two unknown quanti-
ties (weights or distances) must be determined for both beams.  In order
to find the unknowns, the participant is required to solve a set of simulta-
neous equations (or find the solution by trial and error from among a
finite list of possibilities, a potential problem, discussed further below).
The participant must relate two formal operational equations to solve these
simultaneous equations.

Example:   You are still on Counter-Earth, where negative numbers
are used for counting. Your mission now is to figure out how to make
these beams balance.  Here are two sample balance beams.  The arith-
metic operation that defines torque is the same for each.  The mathemati-
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Solution:

The following is an example of a systematic 
order of hierarchical complexity item. The sys-
tematic Balance Beam task presents two formal 
order balance beams to the participant. The same 
two unknown quantities (weights or distances) 
must be determined for both beams. In order to 
find the unknowns, the participant is required to 
solve a set of simultaneous equations (or find the 
solution by trial and error from among a finite list 
of possibilities, a potential problem, discussed 
further below). The participant must relate two 
formal operational equations to solve these si-
multaneous equations. 

Example:  You are still on Counter-Earth, 
where negative numbers are used for counting. 
Your mission now is to figure out how to make 
these beams balance. Here are two sample bal-
ance beams.  The arithmetic operation that defines 
torque is the same for each. The mathematical 
relationship that governs the balancing of each 
system is also the same for each.

Solution:
	 The unknown weight x	 The unknown weight y  
	 is equal to:	 is equal to:

	 a. 5	 a. 1

Method of Administration

The adult participants received the complete 
range of developmental tasks, from primary to 
metasystematic. The children received all devel-
opmental tasks except the metasystematic task, 
which we deemed to be too long and too difficult 
for them to perform. Half of the adults received 
the instrument in class from the experimenters and 
completed it at home. At a later date, these partici-

pants recruited the other half of the adult sample, 
becoming experimenters in their own right.

Results

The analysis was carried out in four steps. 
First, to find the scaled difficulty of the items 
(see Table 1), a Rasch model of the data was 
generated with Winsteps (Linacre, 2004). The 
consistency of the hypothesized difficulty order 
(by the Model of Hierarchical Complexity) of 
the items was tested with a Rasch analysis. The 
reliability of the item estimates from the Rasch 
analysis was .98 with mean infit mean-square of 
.59 (range .24 to 1.41). This supported Commons’ 
claim that the balance-beam task series measures 
a single dimension of performance. Cronbach 
alpha was .93, indicating the items were effective 
is separating participants along the hierarchical 
complexity continuum. 

Second, the Model of Hierarchical Complex-
ity was highly accurate in predicting the stage of 
performance on tasks as shown in Figure 1. There 
was an extremely strong relationship between the 
order of hierarchical complexity (a task property 
variable on the x-axis) of the tasks and the cor-
responding Rasch scaled difficulty of those same 
items (a performance variable on the y-axis), r(42) 
= .879, F(1, 40) = 136.22, p < .0005, r2 = .773 
(see Figure 2). The mean scaled score was M = 
.00 (SD = .41), and the mean order of hierarchical 
complexity was M = 9.9 (SD = 1.70). 

Third, a univariate analysis showed that the 
order of hierarchical complexity of the items 
made a large difference in stage spacing, F(4, 
30) = 261.09, p < .0005. Since we were testing 
the null hypothesis that stage spacing was equal, 
the large effect size, r2 = .976, suggests that stage 
spacing was not equal.

Fourth, part of the spread of Rasch scores 
within an order of hierarchical complexity was ex-
plained by the horizontal complexity of the items. 
Horizontal complexity is the sum of the number of 
actions at a given order of hierarchical complex-
ity required to complete a task. In addition to the 
hierarchical complexity as a predictor of Rasch 
scaled scores of difficulty, a multiple regression 
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task requires the coordination of two operations. First, the total weight on
each side of the beam must be equal. On one side of the fulcrum, there is
a single weight. This weight must be balanced by a stated weight plus
some unknown additional weight. The participant determines the unknown
additional weight by subtracting the stated amount of weight (3) from the
total (7).

Example:

Choose the number that balances the balance beam:

• The beam is represented by the horizontal table.
• The middle of the beam is at the 0 point, which is indicated by the 

symbol.
• The numbers to the left and right of the balance point (fulcrum, 0) on

the beam are the distances.
• The numbers in the black circles below the beam are the added weights.
• The value x is the amount of weight needed to balance the beam.  In

the example, the amount needed is 4.

Solution:

The following is an example of a systematic order of hierarchical
complexity item.  The systematic Balance Beam task presents two formal
order balance beams to the participant.  The same two unknown quanti-
ties (weights or distances) must be determined for both beams.  In order
to find the unknowns, the participant is required to solve a set of simulta-
neous equations (or find the solution by trial and error from among a
finite list of possibilities, a potential problem, discussed further below).
The participant must relate two formal operational equations to solve these
simultaneous equations.

Example:   You are still on Counter-Earth, where negative numbers
are used for counting. Your mission now is to figure out how to make
these beams balance.  Here are two sample balance beams.  The arith-
metic operation that defines torque is the same for each.  The mathemati-
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cal relationship that governs the balancing of each system is also the same
for each.

Solution:

The unknown weight x The unknown weight y
is equal to: is equal to:

a. 5 a. 1

Method of Administration

The adult participants received the complete range of developmental
tasks, from primary to metasystematic.  The children received all devel-
opmental tasks except the metasystematic task, which we deemed to be
too long and too difficult for them to perform.  Half of the adults received
the instrument in class from the experimenters and completed it at home.
At a later date, these participants recruited the other half of the adult sample,
becoming experimenters in their own right.

Results

The analysis was carried out in four steps.  First, to find the scaled
difficulty of the items (see Table 1), a Rasch model of the data was gener-
ated with WINSTEPS (Linacre, 2004).  The consistency of the hypoth-
esized difficulty order (by the Model of Hierarchical Complexity) of the
items was tested with a Rasch analysis.  The reliability of the item esti-
mates from the Rasch analysis was .98 with mean infit mean-square of
.59 (range .24 to 1.41).  This supported Commons’ claim that the balance-
beam task series measures a single dimension of performance. Cronbach
alpha was .93, indicating the items were effective is separating partici-
pants along the hierarchical complexity continuum.

Second, the Model of Hierarchical Complexity was highly accurate
in predicting the stage of performance on tasks as shown in Figure 1.
There was an extremely strong relationship between the order of hierar-
chical complexity (a task property variable on the x-axis) of the tasks and
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analysis revealed that the horizontal complexity of 
items within each order of hierarchical complex-
ity for this task was also a predictor. Whereas the 
Order of Hierarchical Complexity had β = 2.143, 
t = 11.508, p < .0005; the Horizontal Complexity 
also made a significant but smaller contribution, 
β = 0.253, t = 2.079, p = 0.044. With both factors 

in the multiple regression, r increased from .879 
to r(41) = .880, F(2, 37) = 66.804, p < .0005, r2 = 
.774. The item with the lowest order of horizontal 
complexity and of the lowest order of hierarchi-
cal complexity was expected to have the lowest 
Rasch scaled score, followed by the item with the 
next highest horizontal complexity of that order, 

Table 1
Balance-beam Task Series fit statistics
	 Entry	 Raw	 	 	 	 Infit
	 Number	 Score	 Count	 Measure	 Error	 Mnsq	 Ranks

	 4	 107	 121	 .43	 .08	 .24	 prim4
	 3	 109	 121	 .42	 .07	 .24	 prim3
	 1	 113	 121	 .40	 .07	 .23	 prim1
	 5	 113	 121	 .40	 .07	 .25	 prim5
	 2	 114	 121	 .39	 .07	 .26	 prim2
	 10	 115	 121	 .39	 .07	 .23	 concr5
	 12	 116	 121	 .38	 .07	 .33	 abstr2
	 7	 119	 121	 .37	 .07	 .22	 concr2
	 8	 119	 121	 .37	 .07	 .21	 concr3
	 6	 120	 121	 .36	 .07	 .21	 concr1
	 13	 120	 121	 .36	 .07	 .28	 abstr3
	 11	 123	 121	 .35	 .06	 .25	 abstr1
	 9	 125	 121	 .34	 .06	 .54	 concr4
	 20	 135	 121	 .31	 .06	 .86	 form2n1
	 15	 139	 121	 .29	 .06	 .92	 abstr5
	 14	 143	 121	 .28	 .05	 .89	 abstr4
	 22	 154	 121	 .25	 .05	 .95	 form2n3
	 21	 169	 121	 .21	 .05	 .62	 form2n2
	 19	 174	 121	 .20	 .05	 1.18	 form1n4
	 16	 194	 121	 .16	 .04	 1.41	 form1n1
	 17	 201	 121	 .15	 .04	 1.30	 form1n2
	 23	 213	 121	 .13	 .04	 .81	 form2n4
	 18	 236	 121	 .09	 .04	 1.05	 form1n3
	 24	 237	 121	 .08	 .04	 .97	 form2n5
	 26	 270	 121	 .03	 .04	 .65	 sys1q1y
	 25	 277	 121	 .02	 .04	 .54	 sys1q1x
	 28	 312	 121	 –.03	 .04	 .75	 sys1q2y
	 27	 321	 121	 –.04	 .04	 .77	 sys1q2x
	 29	 337	 121	 –.06	 .04	 .97	 sys3q1x
	 30	 340	 121	 –.06	 .04	 1.11	 sys3q1y
	 31	 343	 121	 –.07	 .04	 .98	 sys3q2x
	 32	 355	 121	 –.08	 .03	 .98	 sys3q2y
	 33	 888	 121	 –.68	 .05	 .32	 met1
	 40	 888	 121	 –.68	 .05	 .35	 met8
	 35	 890	 121	 –.68	 .05	 .33	 met3
	 39	 890	 121	 –.68	 .05	 .34	 met7
	 37	 891	 121	 –.68	 .05	 .35	 met5
	 38	 891	 121	 –.68	 .05	 .35	 met6
	 41	 891	 121	 –.68	 .05	 .35	 met9
	 34	 892	 121	 –.68	 .05	 .35	 met2
	 42	 894	 121	 –.69	 .05	 .34	 met10
	 36	 899	 121	 –.70	 .05	 .50	 met4

   MEAN		 357	 121	 .00	 .05	 .59
   SD		  308	 0	 .41	 .01	 .35
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--------------------------------------------------------------------------------------------------------------
       SUBJECTS MAP OF RANKS
               <more>|<rare>
    1                +
                     |
                     |
                     |T
                     |
                    T|
                     |
                  .  |
                 ##  |
                  #  |S pri7   pri7   pri7   pri7   pri7   con8   con8   con8   abs9      
                ###  |  con8   con8   abs9   abs9   for10
               .### S|  abs9   abs9   for10
                 ##  |  for10  for10
               ####  |  for10  for10  for10
                 .#  |  for10  for10
    0            ##  +M sys11  sys11  sys11
       .###########  |  sys11  sys11  sys11  sys11  sys11
              .#### M|
           .#######  |
             .#####  |
                  .  |
                     |S
                  #  |
                 ## S|
                  #  |
                  .  |  met12  met12  met12  met12  met12  met12  met12  met12  met12       
                        met12
                 .#  |
                 ##  |T
                 .#  |
                    T|
   -1             .  +
                  .  |
                     |
                     |
                     |
                  .  |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
   -2                +
                     |
                  .  |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
                     |
   -3                +
               <less>|<frequ>
--------------------------------------------------------------------------------------------------------------

Note: Items are abbreviated as Primary Order 7 = pri7, Concrete Order 8 = con8, Abstract Order 9 = abs9, Formal Order 10 
= for10, Systematic Order 11 = sys11, Metasystematic Order 12 = met12.  Each # on the left of the y axis represents two 
participants and a single dot represents one participant.

Figure 1. Variable map for order of hierarchical complexity 
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and so on. The multiple regression revealed that 
the Rasch analysis was highly accurate in order-
ing these items according to the two degrees of 
complexity (see Figure 2).

The generality of these results is due to the 
fact that the resulting scaling of item difficulty 
obtained with a Rasch analysis is independent of 
the distribution of the particular participants used 
when the data fit the model (Bond and Fox, 2001). 
The Rasch model enables us to estimate subject 
ability and item difficulty independently of each 
other (Andrich, 1988). Among the participants 
there needs to be a range of performance so that 
some fail almost all tasks and others get almost 
all tasks correct. In this task series, it was clear 
that the items were rather easy for participants, as 
indicated by the distribution of participant scaled 
scores (see left hand side of Figure 1). Several par-
ticipants were scored at or around the systematic 
items, thereby indicating that they would answer 
items of systematic order complexity correctly 
about 50% of the time.

Summary and Predictions of Model 
of Hierarchical Complexity

In sum, the theory of hierarchical com-
plexity predictions were supported:
1.	 The orders of hierarchical complexity were 

shown to be scaled by the natural numbers. 
Because of this, a number of implications 
for understanding stages and stage sequence 
follow:

2.	 Sequentiality of stage of items should be 
near perfect as has been shown here and 
elsewhere (e.g., Dawson, Commons, Wilson 
and Fischer, 2005). 

3. 	 Because orders of hierarchical complexity 
of the tasks are ordinals, groups of tasks at 
different orders of hierarchical complexity 
should cluster in well-defined groups. Us-
ing Rasch analysis, this trend was found in 
the study reported here and elsewhere (e.g., 
Dawson, Commons, Wilson, and Fischer, 
2005). The trend of like-ordered items clus-
tering together is apparent in Figure 1.
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Summary and Predictions of Model
of Hierarchical Complexity

In sum, the theory of hierarchical complexity predictions were
supported:
1. The orders of hierarchical complexity were shown to be scaled by the

natural numbers. Because of this, a number of implications for under-
standing stages and stage sequence follow:

2. Sequentiality of stage of items should be near perfect as has been shown
here and elsewhere (e.g., Dawson, Commons, Wilson and Fischer,
2005).

3. Because orders of hierarchical complexity of the tasks are ordinals,
groups of tasks at different orders of hierarchical complexity should
cluster in well-defined groups. Using Rasch analysis, this trend was
found in the study reported here and elsewhere (e.g., Dawson, Com-
mons, Wilson, and Fischer, 2005). The trend of like-ordered items
clustering together is apparent in Figure 1.

Figure 2.  Balance-beam Task Series Regression. The numbers show the effects
of horizontal complexity, with the lower numbers representing less horizontally
complex problems.

Note: Rasch Scaled Stage Score as a Function of Order of Hierarchical Complexity, r(42) = .879, F(1,
40) = 136.22, p < .0005, r2 = .773.   For the Horizontal Complexity, β = 0.253, t = 2.079, p = 0.044.
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Note: Rasch Scaled Stage Score as a Function of Order of Hierarchical Complexity, r(42) = .879, F(1,40) = 
136.22, p < .0005, r2 = .773. For the Horizontal Complexity, b = 0.253, t = 2.079, p = 0.044.
Figure 2. Balance-beam Task Series Regression. The numbers show the effects of horizontal complexity, with 
the lower numbers representing less horizontally complex problems.
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4.	 Quantal nature of task hierarchy means there 
can be no intermediate single performances. 
A task either meets conditions (1), and (2), or 
does not. But performances may be interme-
diate because they can be mixtures of stages. 
We found intermediate performances

5.	 People may perform in a consistent manner 
across items from the same tasks of the same 
complexity. Most Rasch scaled performance 
scores align with their most frequent stage of 
performance.
The Model of Hierarchical Complexity 

predicted that the Rasch model-generated order 
scores would correspond to a hierarchically or-
dered task sequence. Order of hierarchical com-
plexity of tasks strongly predicted corresponding 
Rasch scaled scores, with approximately 88% of 
the variance in Rasch scale scores accounted for 
by the order of hierarchical complexity. This sug-
gests that, within a domain and on a given series of 
tasks, order of hierarchical complexity accounts 
for most of the variance in performance. Rasch 
analysis was used here to relate performance on 
a task series to hierarchical complexity of the 
problems within the series. This demonstrates the 
feasibility of: a) constructing series of mathemati-
cal problems in an area of the researchers’ interest; 
b) predetermining the hierarchical complexity of 
the problems in that series; c) and measuring per-
formance on those problems using Rasch models. 
The findings of this study and the establishment 
of the Model of Hierarchical Complexity as ac-
curate in assessing the input of task complexity 
could thus aid our analysis and understanding of 
test performance. 
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Appendix A
Behaviors may form classes.  Stimuli may be placed  

into classes both functionally and analytically.
	 Order 
	of Hierarchical 
	 Complexity	 Name	 Example

	 0	 Calculatory	 Simple Machine Arithmetic on 0’s and 1’s
	 1	 Sensory or 	 Either seeing circles, squares, etc. or instead,  
		  Motor	 touching them.  F   O
	 2	 Circular 	 Reaching and grasping a circle or square.  
		  Sensory- Motor	 F   O
	 3	 Sensory-Motor	 A class of filled in squares may be formed 
			   O O O O O

	 4	 Nominal 	 That class may be named, “Squares”
	 5	 Sentential	 The numbers, 1, 2, 3, 4, 5 may be said in  
			   order
	 6	 Preoperational	 The objects in row 5 may be counted.   
			   The last count called 5, five, cinco, etc. 
			   * * * * *	 	 O O O O O 
			   F F F F F	 O /F} 
	 7	 Primary	 There are behaviors that act on such classes that we call simple  
			   arithmetic operations
			   1 + 3	 =  4 
			   5 + 15	 = 20 
			   5(4) 	 = 20 
			   5(3)	 = 15 
			   5(1)	 =   5
	 8	 Concrete	 There are behaviors that order the simple 	arithmetic behaviors when  
			   multiplying a sum by a number.  Such distributive behaviors require the  
			   simple arithmetic behavior as a prerequisite, not just a precursor 
			   5(1 + 3) = 5(1) + 5(3)  =  5 + 15 = 20
	 9	 Abstract	 All the forms of five in the five rows in the example are equivalent  
			   in value, x = 5.  Forming class based on abstract feature
	 10	 Formal	 The general left hand distributive relation is 
			   x  (y + z) = (x  y) + (x  z)
	 11	 Systematic	 The right hand distribution law is not true for numbers but is true  
			   for proportions in logic. 
			   x + (y  z) = (x + y)   (x + z) 
			   x  (y  z) = (x  y)  (x  z)
			   x & (y or z) = (x & y) or (x & z)
	 12	 Metasystematic	 The system of propositional logic and elementary set theory are  
			   isomorphic 
			   x & (y or z) = (x & y) or (x & z) Logic  
			   x    (y  z) = (x  y)   (x  z) Sets 
			   T(False)  ϕ  Empty set 
			   T(True)  Ω  Universal set


