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Empirical evidence has shown that the effectiveness of a reinforcer is related
to the delay between reinforcer and response (e.g., for pigeons, see Chung
& Herrnstein, 1967; Mazur, 1987). For people the finding of a similar
function shows that the effectiveness of a stimulus is related to the delay
between its presentation and the time at which it is to be recalled (for
people, see Ebbinghaus, 1885). This decrease in effectiveness of an event
over time has come to be known as the recency effect (e.g., Glanzer &
Cunitz, 1966; Madigan, 1971; Murdock, 1962; Sternberg, 1966; Wood-
word, 1970). That reinforcer effectiveness over time may be represented as
an exponential decay was not an unreasonable hypothesis, and has been
suggested previously (e.g., Commons, 1981, and White & McKenzie, 1982,
in animal psychology; Muth, 1960, in forecasting theory; Wickelgren, 1974,
in human psychology). Yet previous data suggest that this relation is
hyperbolic (Commons, Woodford, & Ducheny, 1982; McCarthy’s data as
analyzed in McCarthy & White, 1987). Theoretical considerations from a
number of sources suggest that the decay of value is best represented by a
hyperbolic model (Ainslie, 1975; Davison & Tustin, 1978; Fantino, 1981;
Fantino, Abarca, & Dunn, 1987; Mazur, 1987).

The reduction in reinforcer effectiveness implicit in the hyperbolic model
may be due to the imperfections of memory and the confusion caused by
intervening events. From a signal-detection perspective, intervening events
function as noise under this supposition, obscuring previous events. If
reinforcer effectiveness decreases hyperbolically, then the decrease will be
rapid at first and fall more slowly as time progresses, though perhaps never
reaching zero. It will be shown that the relationship between reinforcer
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effectiveness and reinforcer delay is predicted by a hyperbolic model
derived using statistical decision theory (Raiffa, 1968; Raiffa & Schlaifer,
1961) and the additive noise assumption in Woodford’s additive noise
model (Commons, Woodford, & Ducheny, 1982), which is based on
signal-detection theory (Egan, 1975).

THE EFFECTS OF DELAY BETWEEN ANTECEDENT
REINFORCERS AND SUBSEQUENT RESPONSES

In order to assess the effect of delay between antecedent reinforcers and
responses that follow them, discrimination procedures have been devised
and utilized (e.g., Commons, 1979, 1981; Commons, Woodford, & Du-
cheny, 1982; Mandell, 1981, 1984). The reinforcement schedules used as
stimuli in discrimination studies have been samples from a variety of
schedules (Commons & Nevin, 1981). Mandell used rich and lean VI
schedules in which the pattern and spacing of reinforcers on each trial was
not measured; Commons (1979, 1981) used samples from a rich or a lean
T-schedule that resembled random-interval (RI) schedules. Here, the
derivations here will be carried out for a general form of Commons’s (1981)
procedure.

A number of questions about the nature of decrementation and the basic
processes that cause decrementation have arisen. These questions will be
addressed by examining decrementation functions. A theoretical basis that
accounts for the hyperbolic decreases in perceived reinforcement value and
in reinforcement effectiveness has not been set forth. Here, the form will be
demonstrated theoretically, but not empirically, to be hyperbolic.

The purpose of this chapter is to show how the additive-noise account,
which is consistent with delay data, leads to a hyperbolic decrementation
function. Woodford constructed this account (see Commons, Woodford, &
Ducheny, 1982) to explain the results obtained from preference- and
discrimination-trial experiments. The additive noise model might fairly be
called one of the simplest of the many models proposed thus far in that it
makes only a few assumptions.

The first assumption is that each and every reinforcer obtained affects
choice. The effect may be small to the point of vanishing if the time between
the reinforcer and the response is very large. Second, the effects of each
reinforcer are added to the effects of the other reinforcers (Commons,
Woodford, & Ducheny, 1982; Mazur, 1987). Third, noise that occurs
randomly during the delay between a response and a reinforcer decreases
the effectiveness of that reinforcer in controlling that response. The noise
randomly distorts the subject’s memory of reinforcers, each distortion being
statistically independent of previous distortions. These are reasonable
assumptions because they are consistent with a number of traditional
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theories of memory mechanisms (Baddeley & Hitch, 1974; Ebbinghaus,
1885; Underwood, 1948a).

The additive noise model applies to both preference and discrimination
situations. Decrementation in the discriminative and the preference situa-
tions is most likely symmetrical. Many of the laws describing one will hold
for the other (Williams, 1982). The amount of conditioning is equal to a
function of the product of the value remembered about the reinforcer “R”
and value remembered about the reinforced response “S®*” (Dickinson,
1980; Hall & Pearce, 1982; Kaye & Hall, 1982; Williams, 1982). As far as
the memory effect on conditioning is concerned, the two situations are
symmetrical if the combining of the remembered magnitudes of the two
events that influence conditioning is commutative: a*b = b*a. In the
discriminative case, the remembered magnitude of the two events that
influence conditioning is the value remembered about R times the value
remembered about S®*. In the preference case the remembered magnitudes
of the two events that influence conditioning is the value remembered about
S®* times the value remembered about R.! The effect would be symmet-
rical because the discriminative case is simply the reverse of the preference
case. Hence, showing why the decrementation function is hyperbolic for
either situation shows it for the other. The effect of a reinforcer is
decremented as a hyperbolic function of the time between the making of the
choice and the onset of a reinforcer in preference situations, and the time
between the onset of a reinforcer and the making of a choice in discrimi-
nation situations. In this chapter the additive noise model will be con-
structed for discrimination situations.

PROCEDURE

Analogue of Procedure Used in Discrimination-
of-reinforcement-density Experiments

The experimental task is like the task of discriminating from which of two
randomly chosen urns, one representing a rich reinforcement schedule and

'Presumably the conditioning or the establishment of control depends on the first event
being available for pairing, that is, remembered long enough to interact with the second. If
memory were perfect, the initial value of an event would be maintained at the time of a second
event. With noise, the initial value would move toward the mean of all possible initial values.
Let us say the first event has either a value of 1 or -1, and the second event a value of 1. If the
combining were multiplicative, there would be conditioning in either case, 1 x 1 =1, —1 x
1 = —1. With noise, if initially the value of the first event was 1 it would be less than 1 when
the second event occurred. If it was — 1, then when the second event occurred, it would be
more than — 1. If there were total forgetting, the first event would be 0 whether it were 1 or
— 1 initially. Hence there would be no conditioning, 0 x 1 = 0. In the preference situation,
the first event is the response and the second is the reinforcer. In the discrimination situation
the order of the events are reversed.
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one a lean reinforcement schedule, a sample is drawn. In the experiment, the
sample is a period from a reinforcement schedule. In the analogue, the two
urns or schedules contain different proportions of reinforcing and nonrein-
forcing balls. The rich urn, in which the probability of reinforcement is .6,
has six reinforcing balls and four nonreinforcing balls. Conversely, the lean
urn has four reinforcing balls and six nonreinforcing balls. During each
stimulus period the subject is allowed n draws with replacement from an
unknown urn, where n equals some number from 6 to 18. After the nth
draw a choice period follows. During this period the subject indicates
whether the sampled urn was the rich or the lean reinforcement one.

Method

The central purpose of this experiment is to provide a framework for the
development of the additive noise model. Three versions of the experiment
are used to characterize the role that time plays between a reinforcer and a
choice. Qualitative tests on data that Commons (1981) previously collected
show whether the pigeons’ discrimination of reinforcement density is
sensitive to time, relative time, or to the number of events between the
reinforcer and the choice.

In Commons’s 1981 study, four pigeons were each run in one 256-trial
session per day. The experiment utilized a standard Skinner-box pigeon
panel with three keys. Each trial consisted of a stimulus period followed by
a choice period as shown in the bottom of Fig. 7.1.

The stimuli to be discriminated consisted of samples randomly drawn
from one of two modified 7-schedules (Schoenfeld & Cole, 1972) each
composed of four cycles (Commons, 1979, 1981). On each trial, a substi-
mulus sample from one of the two 7T-schedules was presented during the
stimulus period. Each substimulus sample consisted of four equal-duration
cycles. As shown at the top of Fig. 7.1, the cycles were numbered so that
cycle C, in the stimulus period occurred at the beginning of the stimulus
period and was furthest, temporally, from the choice period. Conversely,
cycle C; occurred at the end of the stimulus period and was immediately
followed by the choice period. Thus, a four-cycle trial would be numbered:
C, C; C, C; —choice period.

At the beginning of each stimulus period, the center key was white. The
first center-key peck turned off that key’s light for that cycle. On each
cycle, a center-key peck was (v; = 1) or was not (v; = 0) reinforced
immediately. A reinforcer was one 20-mg pigeon pellet from an illuminated
hopper. On the rich reinforcement schedule, the first center-key peck in
each cycle was reinforced with a probability of .75. On the lean schedule the
probability of reinforcement for the first peck in each cycle was .25.
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Rich and lean schedules were delivered with a probability of .50. In any
given cycle, the first peck was reinforced with the same probability as the
first peck on the rest of the cycles on that trial, p(S® * [R.) having the value
of either .25 for the entire trial or .75 for the entire trial. None of the
center-key pecks that occurred subsequent to the first during any given cycle
was reinforced.

As shown at the bottom of Fig. 7.1, after the last stimulus cycle of a given
trial the choice period began. The center key was darkened and the two side
keys were transilluminated, the left key with a red light, the right one with
a green light. In the choice period the subject had twice the cycle length to
identify the preceding stimulus period as consisting of either a sample from
the rich reinforcement schedule or the lean reinforcement schedule. The
first side-key peck, whether correct or not, darkened both keys, and no
further pecks were counted. The rich schedule was indicated by making a
left-key response, the lean schedule by a right-key response.

When a substimulus sampled from the rich schedule was presented on the
center key, the first left-key peck was reinforced with a 96-mg pellet (a hit
or “left-correct”). A right was not reinforced (a miss or “right-error”). When
a substimulus from the lean schedule was presented on the cénter key, the
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first right-key peck was reinforced (a correct rejection or “right-correct”). A
left was not reinforced (a false alarm or “left-error™).

Although reinforcement probability for the first peck in any given cycle
was neither one nor zero, each first center-key peck in a cycle was either
reinforced or not. Therefore, for a given trial, a reinforcement pattern can
be written with a I representing one earned reinforcer and a 0 representing
no earned reinforcers for a given cycle. An obtained reinforcement pattern
for a trial might be 1710 — choice. These patterns generally represent both
“obtained” reinforcement and “scheduled” reinforcement 2 since subjects
almost always respond at least once during each cycle (Commons, 1979).
The binary pattern of scheduled reinforcement that is delivered is called the
sampled substimulus or just substimulus. Here there were 2* = 16 different
substimulus samples, comprising every possible combination of reinforce-
ment over the four cycles.

Three different standard cycle lengths were used: 2s, 3s, and 45 (f = 2,
3, 4). A standard ¢-value remained constant across trials until the pigeon’s
performance stabilized so that p(L) did not vary more than +0.1 from
session to session. In daily sessions the standard cycle length was of base
length (i.e., ¢ multiplied by 1) on 224 trials, doubled (¢ multiplied by 2) on
16 probe trials, and tripled (¢ multiplied by 3) on another 16 probe trials.
The probe trials were randomly distributed throughout a session.

The frequencies with which substimuli for standard and probe trials with
0, 1, 2, 3, or 4 reinforcers came from the rich schedule and from the lean
schedule are shown in Fig. 7.2. Any substimulus could come from either
the rich or lean schedule. All that differed was the frequency with which
they did so. The modal number of reinforcers was three reinforcers per trial
for the rich schedule, and one for the lean schedule.

The Additive Noise Model:
Derivation of a Simple Form

A model for the process by which reinforcers lose control over responses is
introduced and illustrated with the four-cycle data. The general additive
noise model developed here shows that a hyperbolic function must describe
the decrease in value of reinforcement the further reinforcement occurs
from the behavior that it controls, given some assumptions about the effect
of noise on memory for reinforcement. To illustrate how the additive noise
model may be applied in one experimental situation, three versions of it will
be shown to distinguish qualitatively between the effects of programming a
given temporal-length base cycle for a number of sessions and changing

2Only one reinforcement schedule of all the possible schedules did not appear in any trial due
to the nature of the program used.
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them momentarily on probe trials. The data will not be used to show
whether the decrementation function is hyperbolic. Again, the remembered
value could depend on: (a) the time between a reinforcer and choice, (b) the
relative time between those events, or (c) the number of intervening cycles.

The simplest overall model of forgetting assumes that the signal stays
constant while the amount of noise increases linearly with time. This is
similar to the interference theories in human learning and cognition (e.g.,
Baddeley & Hitch, 1974; Barnes & Underwood, 1959; Ebbinghaus, 1885;
Melton & Irwin, 1940; Underwood, 1948a, 1948b, 1957), as well as
Grossberg’s (1978) theory of scaled short term memory. The overall model
assumes that at the time of reinforcement the perceived value of the
reinforcement in a sample is a random variable. What is discriminated
about overall reinforcement density depends on what is remembered about
what happened on each cycle. Perceived value of a substimulus is a random
variable because the noise added to the memory of each reinforcer makes
the discrimination of that reinforcement event imperfect. The noise affects
the memory of whether or not a reinforcer occurred on a particular cycle.
With each cycle that occurs thereafter, another random noise component is
added to the previous memory of that reinforcement. The random noise
terms are independent of the initial random noise. Hence, the events on the
previous cycle are remembered as follows: !
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M, is the memory of whether or not there was a reinforcer on cycle i and n;
represents the noise on cycle i. Let y; be the amount of reinforcement in cycle
¢;, as remembered by the organism at the time of choice. Then y, =
M1 +nl+n2+n3+n4and y; = M2+n2+n3+n4, and so on. Assume that
; is a normally distributed random variable with variance 0% and mean g
inthecasethat vi = 1 and mean — g;in the case that v; = 0. Given two normal
distributions of reinforcement density with mean y, and p,,,, then according
to Egan (1975), the z,,, —score for the sn distribution is

€ — M
T = e, (1)
sn Oun

and the z, —score for the n distribution is

z, =c__i{rz, %))

On

where c is the cutoff or criterion value along the x-axis for both distribu-
tions (not to be confused with ¢;, which represents cycle i). The criterion
value is that value along the decision axis above which a signal is present
and below which no signal is present. The measure of overlap between the
two distributions is denoted as d’ and is equivalent to

d;:zn_zsn=‘“5ﬂ__ﬂ' 3)

Therefore, assuming that the two means are additive inverses involves no
loss of generality, and only the difference d’ = [; — (— u;)]/0; turns out to
have observable significance. Here, the term g, represents the mean of the
{tsn distribution, or the distribution with reinforcement, and the term — y, is
equivalent to the p, distribution, or the distribution without reinforcement.
g; is the variance of the both distributions, as both are assumed to be
normally distributed y; curves. The sensitivity, &, is the standard psy-
chophysical index of discriminability (Green & Swets, 1966), and here
measures the discriminability of a reinforcer on cycle ¢;. That index does not
generally refer to a sequence of stimuli occurring over a period of time,
however (Nevin, 1969, 1981).
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Representing Perceived Value

The most elemental form of analysis of the discrimination data examines
the choices that an organism makes following a substimulus presentation.
The bias value represents the tendency to indicate that the substimulus
comes from the rich schedule. Why examine bias and not simply discrimi-
nability? The reason is that there is no way to figure out discriminability on
an individual substimulus. A hit is correctly indicating rich when the rich
schedule is presented. But the rich schedule consists of a distribution of all
the substimuli, not just one of them. Therefore, there is no way to construct
a hit or false alarm rate for individual substimuli. However, there is a very
easy way to construct the proportion of left-key responses, p(L), out of the
total responses for each substimulus. That is why we are examining bias and
not discriminability. There is, however, a relationship between the bias and
discriminability at the overall level (Commons, 1981).

A left-key peck to a substimulus is the decision that indicates that the
substimulus is rich. Although only a single left- or right-key peck can occur
on each dichotomous choice trial, p(Z|S,) indicates the proportion of times
the pigeon indicates that the sample was from the rich schedule.® The
proportion (relative frequency) of a left-key peck in response to the given
substimulus is:

P(LIS,) = (LIS)/(L|S, + R|S,). 4)

This proportion is called the bias for a given substimulus sample, S, in
signal-detection theory (Commons, 1979, 1981). That proportion also
indicates the perceived richness of the sample in the following sense.
Because the bias proportion is estimated by probability, it can be linearized
by a probit transformation, z~'p(L), as shown in Commons (1981). The
value, z7'p(L), the inverse-probability (probit) transform of bias, is the
perceived value, V,, of the substimulus schedule sample. This probit
transformation makes linear a plot of value versus number of reinforcers in
a sample (Commons, 1981). Perceived value is just the sum of the
decremented values of each reinforcer. A difference exists between this
probabilistic estimate and the perceived outcome because sometimes the
pigeon would make a choice before having responded to every cycle. For
example, on a schedule of 0001, the pigeon might respond after the second
or third cycle and never get the reinforcer on the last cycle.

Linear regressions of perceived value were carried out to see what the
contributions were of a reinforcer on a cycle. The coefficients, a;, which

This proportion is simplified to p(L).
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represent the contributions, were estimated using the following multivariate
equation:

sl
Vsn = Vsn (L—' R) — z_lp(Llsn) = El lf“ivi # (5)
=
The value-weights, a;, are applied to the reinforcer-occurrence variable v;.
The reinforcer-occurrence variable v; = 1 when a reinforcer did occur and
v; = 0 when a reinforcer did not occur on the instance i/ time periods before
choice where a reinforcer might be programmed. An g, coefficient reflects
the value of a reinforcer at the time of choice when it occurred i time periods
before the choice. This is because it represents the contribution of the
presence of a reinforcer on cycle; to the prediction that the probability of the
choice was 1. The probability of a left choice should be 1 if the stimulus was
rich (0 is the value for a lean choice).

Insensitivity-The § Measure

Here we will introduce a new variable, §;, which we will call the inverse of
sensitivity to the signal “reinforcement.” It will be represented by the
numerical value of 4/(d’)? (Egan, 1975; Green & Swets, 1966; Nevin, 1969,
1981). This inverse of sensitivity is introduced so that the form of the
following equations is simplified.* The general form of the following
equations are shown in the appendix and the cases described by the
experiment are shown here. The probability density function (PDF) of the
amount of reinforcement remembered on a cycle, y;, in the case of the rich
schedule, S, : v; = 1 with probability 3/4 and v; = 0 with probability 1/4,
iss

L3 —'(Yi_.l‘i)2

M0 = o o T 2R

Gl o sibna?

4 \27 o 20%;

Here, reinforcement on the rich key comes with probability 3/4, so the
normal distribution for reinforcement on the rich key has a coefficient of
3/4, and nonreinforcement only occurs with probability 1/4 so that is the
coefficient of the other normal distribution. This probability density
function, which is the expectation, is simply the weighted values of

“When variables are normally distributed, detectability of reinforcement density (Commons,
1979) is & = z7'p(Hit) — z~'p(False Alarm) = z~'p(Indicates Rich|Was Rich) - z''p
(Indicates Rich|Was Lean).



7. REINFORCER CONTRIBUTION 149

reinforcement or nonreinforcement. The expectation is simply the weighted
values of getting reinforcement or nonreinforcement. The expected value of
the random variable y; on any given trial, and has the form:

where v, is the value of the random variable on cycle i, p; is the probability
of that value occurring, and n is the number of cycles in the trial.

Assume that probabilistic responding is a result of the combination of
signal and random noise in the perceptual and memory processing of
reinforcers in the schedule sample. With reasonable amounts of noise, the
perceived density will be higher when the actual mean density is higher
(Commons, 1979).

As in the case of the rich schedule, in the case of the lean schedule, S; :
v; = 1 with probability 1/4, v, = 0 with probability 3/4, y; will have density
function:

_3_1 — = w)’
f(YI) i 4 Z?Tgi ke 2021
% 1 1 . — (i +p)?
4 4/ 211"0} 25 i

If a bird chooses left or right so as to maximize the expected payoff, given
the particular remembered values y,, y,, ¥3» Ya» of the sequence of events v,
V3, V3, V4 in the scheduled sample, it will employ a likelihood ratio criterion.
That is, it will peck left only when the ratio

EP(L[Yly Va2, V3, ¥a4)
EP(RIYD Yz, Y3s Y4)
Now,

> 1.

EP(Lti ¥2» Y35 ¥4) Pl Up p(y;, Y25 ¥3, ¥4) i ULTif(Yj|SR)
EPR|yy, 2, ¥3, ¥4) ~ Ug D1, ¥a» V3 Ya) Urmif(y;[Sr)

Where U; and Ug, represent the utility values for the reinforcers received for
a left or right key peck

'r I3 - (yi—w)’ 1 —(y+m)?
UL!:I,[Ze 7 BN M

4
Uk prl1 - Gi—s) 3 - i +m)?
[Nl e L =
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Taking out the; II(1/4) from top and bottom and then expanding, yields

—(y2—2y; g+ pd) — (v 4 2y + 1)
iy i 2 20 e 27

Ur izt~ =2y +id) — OF + 2y + 1)
e 202 + 3e 27
—(yi+u)

Then the term, e 26 may be factored out and canceled top and bottom, and
simultaneously dividing top and bottom by the term

— (yipy)

g 2?1 yields

zii
4 36%%—1

.. y
- Ur 1I=Il § e Qyip)
e

The bird will peck left when this quantity is greater than 1. We see that this
equation is a nonlinear condition on the y; values. But in the case that the
discrimination of the reinforcers is difficult (that is, all the §; are relatively
large), and therefore p; < < o7 which would appear to be the case in this
experiment, the following truncated Taylor series expansions of the expo-
nential may be used as approximations:

2y 2y 2yim”
3oL 4 g 3‘1+y—f+yf]+1

as ad; a5
@y
2

1
g

3 +e
B 4

2.1 2 2.2
%4 [ o yllu'1+ Yi By
a; a;

Dividing top and bottom by 4/3
g Yith g yitu
2 0'12 2 0i4

Ly 1 Yizﬂiz
= — T
2 C"i 2 O'i

n

Multiplying top and bottom by
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3y | 33w Lyws _ 1ylw
= 1 = Jiki bt 5 'oee SOl O
NP [ Dt Sl e
yields
2.3
Yiki 1 Yi ki
=1 = )
+ e +3 ; (5a)
and finally
= e'i*i/o}%.

This is the formula for the four-cycle data collected by Commons (1981). A
more generalized form of this equation is derived in the appendix, where a
sample of n-cycles over any symmetrical reinforcement densities is analyzed
as above.

So, for four-cycle data, the condition for the bird to peck left is

UL II Vit

R i=1 i
That is,

==

4
I m, Ug
i=1 01 U,

Taking the natural log of both sides gives

U
3’1.1;1 s o )
i=1 Oi UL

Note that both linear and quadratic terms in each of the four Taylor
expansions are kept, so that the result is correct up to terms of order (1/6,)°;
when §; is very large, (1/6,)° is very small. Furthermore, we only care about
the validity of the approximation in the region where EP(L)/EP(R) = 1
that is, where

E (i) / 02 = In(Ug/Uy),

i=1

which in the case of only moderate bias, will mean y; values such that none
of the (v;p;)/ 0> = yi/6y; is very large. The term on the left has been derived
directly from the PDF given.
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Here we have shown that the bird will peck left when

S

=51
)=: o > R UL
But the expression on the left, as a sum of normally distributed multivariate
random variables, is itself normally distributed,

E (2v - , which is the mean

4
1 Y s
E 6— » Which is the variance

and is conditional on the occurrence of the substimulus described by the v;,
since the conditional distribution of ¥; is N(g; (2v; -1), o). Therefore the
probability of its being greater than 1n (Ug/U,), given the occurrence of
that substimulus is given by

M o }U.i - M = ]Il(UR/UL)

Z Ly = o 1/2
2 g Vsn

so that

4
Zp(L) = E aivi i b 3

i=1

where

(6)

T

The a; coefficients can now be interpreted as indicating the rate at which
discriminability of reinforcement declines with time. The value of &;
(indistinguishability) was defined as 4/ (d). The set of 6; implied by a given
set of a; coefficients are easily reconstructed by inversion of Equation (6):
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From Equation 6 we get
2
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The mean p; is the value of reinforcement remembered (i.e., perceived
value) for a given cycle. Since the contributions of reinforcers will be added,
the detectabilities should be in a form in which they add easily. By having
the variance in the numerators, it will be possible to add the detectabilities,
since the variance of the sum of independent variables equals the sum of the
individual variances. The inverse of discriminability of reinforcement in
cycle; is then measured by:

o2
6 = 5. 7
i Miz ()

The parameter §, is the inverse of sensitivity of reinforcement that occurs
with no delay between reinforcement and choice. Note that when §, = 0,
variance is 0 and detection is perfect. Likewise, as §; gets larger, detection
becomes poorer.

The simplest model of forgetting would be to assume that the signal stays
constant while the amount of noise increases linearly with time. If it is
assumed that the perceived value Y at the time of reinforcement is a random
variable Y, (random because of imperfect discrimination of reinforcement
even at that time), and that with each cycle that passes thereafter there is
added another random noise component e (with the random noise terms
independent of Y, and of each other, and all identically distributed), then
the random variable Y;, representing remembered values of reinforcement
after 7 cycles have passed (in the case of the four-cycle experiment), can be
written as
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Therefore,
E(Y) = E(Y),
var (Y;) = var (¥y) + i * var (e) ,
and

_ var () _ var (¥y) ., var (e)
'TUEY T OEYy T EE

The discriminability measure §;, as a function of cycle number i, is therefore
predicted to be a linear function. The first term in the last equation is
replaced by its equivalent, 8,; the second term by its equivalent, J ~:

5 =8 + iv.

As noise is linearly added to the initial inverse of discriminability, the
variance goes up so §; increases. Hence, according to a simple additive
model, the inverse of discriminability of reinforcement on cycle; is simply a
function of the initial discriminability plus the product of 7, the rate at
which noise is added between the reinforcer and choice, and v, the rate of
forgetting:

6 = 8 + 7+, for some §, and v > 0. (8)

How the General Additive Noise Model Predicts
Perceived Reinforcement Value

The rate at which noise is added between the reinforcer and choice, 7, can
be represented by the product of three terms: i, t, and s°. The parameter
i represents how far (in time periods) a possible reinforcer is away from
choice. The value ¢ is the length of the standard cycle and s is the probe
multiplier (s = 1 for standard, s = 2 for double, s = 3 for triple). Note that
the passage of time or elapsed time equals i ¢ s. Three submodels, which are
created by setting e, 8, or both equal to 1 or 0, generate three notions of the
rate of noise addition. If there is no effect of cycle length on perceived
value, a = 0. If there is no effect of probe multiplier on perceived value,
B = 0. These submodels will be presented.

Each of the submodels is subsumed by the more general model:
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& = 8 + i1 y. &)

This equation might be used to estimate the four parameters: §;, «, 8, v by
employing the data for all substimuli, all cycle lengths, and all probes, and
special hypotheses (e.g., submodel 1 assumes @ = § = 1) subjected to a
statistical hypothesis test (chi-square).

To show that value decreases as a hyperbolic function of i, the represen-
tation of value in the present experimental example is defined. As explained
in Commons, Woodford, and Ducheny (1982) and here, the perceived
reinforcement density, V, , of a sample, S,, is a function of the &’s. That
value is defined as the bias to indicate rich, g~ "p(L). Again, it is assumed
that the value of the entire substimulus is just the value of the sum of the
contributions, g;v;, which is the effect of each reinforcer as remembered:
Then the value of a sample as a function of §; is derived in the appendix.
That derivation shows that the value of a sample should fit a hyperbolic
model. The results are as follows:

4
V, = 27'p) = L aw , @, 10)
i=1
where
4 3 1/2
G =153 17, a1
i=1 9

The value ¥ in hyperbolic form is as shown:

4
1 ias c
() = g S (12)
where
a8 fral
b s (13)
c = 4 1 1/2
=1 o ,8
[ |
6 + jtswy
41186
d = omi (14)



156 COMMONS, WOODFORD, TRUDEAU

Equation 12 shows that the equation for reinforcer value has a hyperbolic
form. The parameter i represents how far (in cycles) a possible reinforcer is
away from choice. Equations 12, 13 and 14 give the predicted effects of
varying f and s on the parameters of the hyperbolic model. There are several
plausible hypotheses about how the rate of forgetting (y) varies as the length
of the cycles varies. The submodels are presented next.

Submodel 1 (Time)

It might be supposed that the rate at which noise is added to the memory
of a reinforcer depends solely on the passage of time, rather than on
intervening events or a combination of events and time. In this case
sensitivity on cycle; would be

8, =08y + itsn. (15)

The value ¢ = length of the standard cycle and s = probe multiplier (s =
1 for standard, s = 2 for double, s = 3 for triple). Again, elapsed time
equals i s . In Equation 15, §, and  should be the same for all cycle lengths
and probes. Neither &, nor v is affected by time.

To see if submodel 1 fits the data, a linearization of bias measured by
z~ 'p(L), which is the perceived value of the schedule sample, is examined as
a function of time in Fig. 7.3.

If memory were perfect, then perceived value of the sample for all
substimuli taken together would be zero, z~'p(L) = 0. Any indiscriminate
change from the average bias would either increase false alarms (indicating
rich when it was in fact lean) or misses (indicating lean when it was rich).
Decreases in z~'p(L), therefore, represent forgetting. As standard cycle
length f increased, i ¢ s would increase and submodel 1 would predict a
decrease in discriminability. This would appear as a decrease in z~ 'p(L).
This decrease was not found in the data shown in the left column of panels
in Fig. 7.3. Submodel 1 would predict that the substimuli with the shorter
cycles (circles) should be better discriminated than the middle length cycles
(triangles) and those in turn better than the long cycle length (squares). The
base-length-cycle substimuli were all equally well discriminated, which does
not support submodel 1.

Submode! 2 (Number of Intervening Cycles)

The contrary extreme hypothesis would be to suppose that the rate at
which noise is added depends solely on the number of subsequently
occurring events between the reinforcer in question and choice, and not on
the amount of time that elapsed. The number of cycles (number of events
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macrolevel relation. At the molar level, Columns 2 and 3 show the relation

between perceived density and cycle length for substimuli with one
reinforcer and substimuli with three reinforcers (one missing reinforcer).

to store) is all that matters. Here those intervening events are the cycles with
possible reinforcers in them. In that case it would be expected that:
8 =8y + Iv. (16)

In this submodel, &, and v values should be the same for all cycle lengths
and probes. This means each g; is identical to the corresponding a; although
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the base-cycle length or probe multiplier differs. The only dimension that
pigeons should be sensitive to is number of reinforcers.

In Fig. 7.3, for substimuli with one missing reinforcer, submodel 2
predicts that there would be no forgetting and 7z 'p(L) would remain
constant. As shown in the right -most column, there was forgetting for all
the pigeons; z~'p(L) did not remain constant. All the standard length
substimuli were remembered better than the equivalent length doubles.

If submodel 2 were correct, time in the form of base cycle length or probe
doubling or tripling should make no difference. In Fig. 7.4, this would
mean that all the slopes would be the same for all cycle lengths and all
probes. If the slopes differed it would reflect differential sensitivity. Again,
the steeper the slope the more sensitive to the number of reinforcers. The
slopes get flatter for double- and triple-length cycles, which is inconsistent
with submodel 2.
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Fig. 7.4 Perceived density, z~"p(L), shown as a function of actual density
(the number of reinforcers in a substimulus). This molar relation is shown
for all trials together (Column 1), for trials with standard cycle length

(Column 2), for probe trials where the standard length was doubled
(Column 3) and tripled (Column 4).
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Submodel 3 (Relative Time)

An intermediate submodel assumes that the rate at which the remembered
value of a reinforcement decreases is adjusted according to the average rate
at which events occur in a particular experimental situation. Hence it is not
how much time has passed that causes the decrease in value, but simply
length of time relative to the average time between events in the particular
environment. According to this hypothesis, a change in the length of the
standard cycle would have no effect, but the inclusion of a probe substi-
mulus when the organism has calibrated its rate of memory decay to a
different rate of occurrence of events will affect the size of the a;. Thisis a
finite storage capacity model given that probe stimuli are interpreted as a
larger number of events:

X--X---X%X events

points at which reinforcers could occur.

The pigeon expects events at all the points and so allocates memory space to
each. This submodel is especially consistent with submodel 3a, a generali-
zation of submodel 3 that contains parameters for bias. It is presented in the
appendix. The pigeon remembers events at the standard-cycle frequency.
Remembering all the nonevents (in case of a probe) as events of nonrein-
forcement causes the bias. In this case one would expect:

& = 8 + isn. a7

The value of i s increases with increased probe multipliers or with cycles
further from choice. Note that in the left panels of Fig. 7.3 the three
left-most points do not show much change for z~'p(L) for all substimuli
taken together, consistent with the predictions of submodel 3. That is, the
perceived value of reinforcement did not change for the 2, 3, and 4 second
base cycle lengths. The very problems that submodel 1 and submodel 2 had
are solved by submodel 3. The effects of both probes and time are
predicted. For instance, the 4-s standard, shown in the right column, is
always above the 2-s double probe.

Submodel 3 was generally supported by the data shown in Fig. 7.4, For
this submodel, if the probe multiplier s increased, all the 8’s should
increase. Increased 8;’s would indicate decreased sensitivity —the slope of
Vin versus number of reinforcers should decrease. In Fig. 7.4, for all
pigeons, the slopes for the standard base cycle length are similar. As the
probe cycle-length multiplier increased, the slope decreased 4s submodel 3
predicts. The data points for trials with standard cycle lengths fell on top of



160 COMMONS, WOODFORD, TRUDEAU

each other for all four birds. These points began to diverge for trials of
double standard length (i.e., as s increased, base trial length made a greater
difference in slope), and diverged even more for trials of triple standard
length in the cases of Pigeons 84 and 995. This is all consistent with
submodel 3; an increase in s should cause a greater divergence in slope as
base cycle length increases because §, increases as base cycle length
increases, and therefore &; does as well. But this increase is linear, the sum
of increased s y and 8, and thus divergence should be linear as well. For
pigeons 84 and 995, this assumption is supported.

The exceptions to submodel 3 can be seen in the Triple column of Fig.
7.4. Pigeons 30 and 102 show extreme bias: Their responses to probes are
severely biased in favor of the lean reinforcer. Note that none of these
submodels predicts the value of a bias term for the entire hyperbolic model.
Hence, birds that react to the probe trials in a severely biased fashion
cannot be used to distinguish any of these hypotheses. An alternative
explanation exists, however, for the data that indicate bias as shown for the
pigeon 30 and 102 in the top middle panels of Fig. 7.4.

Fully General Model with Parameters for Bias,
Models 1a, 2a, 3a

Pigeons 30 and 102 exhibited extreme bias for going to the right for triples
as shown in Fig. 7.4. This is consistent with submodel 3a, a generalization
of submodel 3 that adds terms to estimate this form of bias. A fully general
model with the parameter s for this form of right bias is shown in the
appendix. If this bias parameter, s, is small in submodel 3a, then the tendency
to choose left would increase. If it is exactly 1, then submodel 3a reduces to
just submodel 3. If s is very large then the value of a substimulus is markedly
decreased, resulting in a strong right bias. This is just what was found as
shown in the top middle panels of Fig 7.4. There is no general theoretical
basis at this time for expecting such right bias, other than the possibility that
all events outside a time period fixed by the length of the cycles (2 X 4 =
85,3 x 4 =12s,4 X 4 = 16 s) are totally ignored. If these events are
ignored, then subjects act as if they had zero value. Another possibility is that
longer probe cycles result in memory of a large number of nonreinforcements
(without truncation of time period over which memory occurs).

CONCLUSION

It was shown analytically that the time window must be a hyperbolic
function of value versus some measure of time. The major assumption
made was that noise interfering with the effectiveness of reinforcement is
added in a linear fashion.
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Applying the general additive noise model to the results from Commons
(1981) showed that the decrementation function is not a simple function of
simple time. The effectiveness of reinforcement decreased as a function of
a form of time. This form of time progressed along the relative rate dimen-
sion; thus time progressed relative to the rate of baseline reinforcement.
Three submodels and a set of variants were qualitatively tested. The exper-
imental requirement was for the pigeons to detect the richness of the sample.
Therefore, the number of reinforcers in the sample determined which choice
would be most likely to be reinforced. The best decision rule required
sensitivity only to number of reinforcers. Out of the possible four reinforc-
ers, if there were zero or one reinforcers the best choice would be to indicate
lean; if there were three or four reinforcers the best choice would be rich,
Other decision rules could mean that the pigeons are less sensitive in some
way since they would not exhibit an exclusive preference. Mazur (1984, 1987)
leaves time in one schedule constant while varying delay in another. Until
background rate of reinforcement is varied, the role of context per se in the
choice situations consisting of a single or a few reinforcers will not be clear.
From the perspective of melioration theory (Herrnstein, 1982; Herrnstein &
Vaughan, 1980) and our own acquisition theory (Commons, Woodford,
Boitano, Ducheny, & Peck, 1982) the background rate of reinforcement as
well as its variability should be important as we have found here.

Qualitative fits of submodels of the general additive noise model showed
that neither simple time nor the number of reinforcements (i.e., the number
of cycles with reinforcement) accounted for the findings. A test of the third
submodel suggested that a parameter for overall bias independent of
experimental conditions should be included. The decrease in reinforcement
value was sensitive to changes in reinforcement rate with respect to
background rate and not with respect to number of reinforcements or time.
The general additive noise model can be used in preference studies since the
model was formulated in terms of “time” between a response and a
reinforcing schedule component. The schedules modeled here are general in
form, since they are T-schedules that resemble random interval schedules.
As Schoenfeld and Cole (1972) have shown, T-schedules with certain
parameter selections behave like interval schedules. From the assumption
that noise is linearly added between reinforcement and choice, hyperbolic
decrementation functions were analytically derived and then illustrated.

APPENDIX

The value of a substimulus, ¥V, is the bias to indicate that a substimulus is
rich, z7 'p(L). That value is directly related to 6;. Again, it is assumed that
the value of the entire substimulus is just the value of the sum of the
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contributions, a;v;, which is the effect of each reinforcer as remembered.
This derivation gives the predicted effects of varying ¢ and s on the
parameters of the hyperbolic model. The second important result of the
derivation is that our use of the additive noise model yields a value of a
sample that fits a hyperbolic model.

4
V. = 27 'p) = L ayi , @, 10)
i=1
where
3
g T BT (11)

Fully General Submodel: Submodel 3a

By Equation 13, which states that §; = 8, + I * s% ~, and Equation 2, 10,
and 11,

<
Il

4
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Equation 21, which is derived from Equation 20, shows that the decremen-
tation function is hyperbolic in form:

4

27 'pL) =

where

(12, 21)

i=1
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4 9 172
c=[ESNILF 17, (13,22)
i=19
d = % 14,23
- tcxsﬁ’y 3 ( £ )

Generalizing to n Cycles and any Symmetrical
Reinforcement Densities

The models in the text are generated for four-cycle data only. Fully
generalized derivations of the Probability Density Function (PDF) and §;
for n cycles are as follows:

For the rich schedule where a left response indicates reinforcement the
probability density function has the form

—(vi — i2 1 v + iz

Likewise, for the lean schedule where reinforcement is delivered on the right
response, the probability density function has the form

- 3 —(}'i _.'u'i)2 1 —(yi + ,U.i)z
f(y) = p(RISum 5 P o + p(N|S;) 2re " © S

Where p(R|S,) is the probability of reinforcement on the given substimulus,
(i.e., v; = 1) and p(N|S,) the probability of no reinforcement on the
substimulus. The condition for the bird to peck left

EP(L|y:, ¥25 Y35 Y4 - - - ¥u) S
EPRR|y, ¥2: V3, Y4 - - « Yn) ’

EP(LIYU YZs Y3s Y4 I Yn) = ﬁ p(YI’ YZ! Y‘_’.’ Y4 SN Yn)
EP(R|Y1, Yoy V3, Y4 o -« Vo) Ug pP(¥1s Y20 ¥3: Y45 -+ + ¥n)

- ULHif(yi|SR)
URHif(Yi|SR) :
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Factoring and expanding, as shown, yields
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Factoring and dividing again, as shown, yields

2 i
gy RIS e 24 sy
UR i=1 p(Nl‘SL) e p(R|SL} e (2}’1#1)

i

For the next part of this discussion, it is sufficient to work with only the
function within the iterative multiplication. The function in this product is
approximated by the Taylor expansion

2y 2yiud
P(R|S) [1 + = =] + NS

e
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1

and, since this case is symmetrical, expanded to
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Multiply top and bottom by
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and drop all but linear and quadratic terms. The denominator thereby
approximates 1 and we are left with the product of the numerator and our
polynomial:

P(R|Sr)2y; P(R|SR)2}’i2P-?
+ 55 + o

1

|

7 o

[ | _ PRISUZys  PRIS) (1 = 2p(R|S,) )2y?n?l
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