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Overview

The existence of hierarchical stage sequences
is a controversial issue (Brainerd, 1973; Brough-
ton, 1984). This controversy cannot be resolved
in the absence of task sequences that reliably and
accurately reflect specific difficulty levels, In
this study, we show that Commons® (Commons,
Goodheart, and Bresette, 1995) Balance-Beam
instrument, which was designed specifically to
assess hierarchical complexity, elicits develop-
mentally sequenced and hierarchically orpanized
behavior. In doing this we demonstrate how Ra-
sch modeling (Rasch, 1980) and saltus analysis
(Wilson, 1989) can be applied to the problem of
demonstrating that a constructed developmental
task series actually measures what it is purported
fo measure,

Theoretical Framework

The Model of Hierarchical Complexity
(MHC) of Commons and his colleagues (Com-
mons, Trudeau, Stein, Richards, and Krause,
1998} is a generalized developmental model that
classifies development in terms of the hierarchi-
cal organization of ideal actions. The mode!
addresses two conceptually different but related
issues, The first issue is the analytic notion of
hierarchical complexity. Hierarchical complexity
refers to the number of recursions that coordinat-
ing actions must petrform on a set of primary ele
ments. Actions at a higher order of hierarchical
complexity: a) are defined in terms of the actions
at the next lower order of hierarchical complexity;
b) organize and transform the lower order actions;
c) produce organizations of lower order actions
that are new, non-arbitrary, and cannot be accom-
plished by those lower order actions alone.

The second issue is the empirical question
of how hierarchical complexity of performance
on tasks develops. For the instrument employed
in this study—the Balance Beam instrument
{Commons et al., 1995)—several tasks have been
analytically constructed for each of 6 complexity
orders. An individual’s hierarchical complexity
score on this task series is based on the order
of hierarchical complexity of the most complex
tasks that are accurately completed. Hierarchi-

cal complexity scores are not intended to be
measures of competence, They are measures of
performance.

Tasks have many features in addition to their
hierarchical complexity, many of which affect
performance (Fischer and Bidell, 1998). In order
to minimize the “noise” from features other than
hierarchical complexity, the balance beam prob-
lems in our instrument were constructed with as
little variation in form and content as possible. In
other words, in constructing items for the different
complexity orders, we attempted to manipulate
only the hierarchical complexity dimension.

If the tasks in an instrument represent a
single latent dimension, differing only in their
difficulties, then we would expect the data to
fit the Rasch model. However, if the tasks in an
instrument represent suecessive orders of hierar-
chical complexity, and solving tasks of different
orders of hierarchical complexity requires quali-
tatively distinct forms of reasoning, then both
itern difficulties and person estimates will exhibit
relatively rigid, Guttman-like (Guttman, 1950)
orderings (Fischer, Knight, end Van Parys, 1993).
Moreover, Rasch analysis will reveal clusters of
items, representing the different complexity or-
ders, that are separated by statistically significant
gaps, and the distribution of person estimates may
appear ‘toothy’ with clusters of person estimates
systematically associated with clusters of item
difficulties (Dawson, 1998; Dawson-Tunik,
Commons, Wilson, and Fisher, 2005). Certain
patterns of misfit to the Rasch model are also
likely to be observed (Mislevy and Wilson, 1996;
Wilson, 1989). The saltus modet (Wilson, 1989
#3520), makes it possible to test whether or not
these patterns are indicative of discontinuities in
development that are consistent with develop-
mental stage theory.

We hypothesize (1) that the ability to solve
balance beam problems will emerge in a Rasch
analysis as a single latent trait or dirnension of
performance with item difficulties ordered ac-
cording to complexity order; (2) that items of
different orders of hierarchical complexity will
cluster in groups along this dimension and that
misfit will be associated with this clustering;
and (3) that a saltus analysis will demonstrate

that these clusters are indicative of a pattern of
performance that supports the notion of devel-
opmental stage.

Method

Convenience sampling was used to gather
121 predominantly Caucasian, middle class
participants (79 female, 37 male), whose-ages

ranged from 7 to 56 years (M=29.2,80=12.98). -

Participants were solicited from New England
public schools and colleges. Participation was
voluntary, Participants were given unlimited
time to complete a multiple choice pen and paper
instrument containing primary, concrete, abstract,
formal, systematic, and metasystematic balance
beam problems. Only the concrete, abstract,
formal, and systematic balance beam problems
are analyzed here, :

Instrument

The Balance Beam Series is a pen and paper
instrument that consists of sets of multiple choice
problems of increasing hierarchical complexity.
The tasks form a series because every higher
order task has the lower order task of the previ-
ous complexity order embedded within it. In the
present series, there are 5 concrete order items,
5 abstract order items, 4 formal order items, and
4 systematic order items. These items are pre-
sented in 4 sections. A set of instructions and an
example problem are provided at the beginning
of each section. Figure 1 gives examples of items
at each level.

Concrete Balance Beam. The concrete Balance
Beam task requires the coordination of two
operations, as shown in Figure 1: First, the

total weight on each side of the beam must be
equal. On one side of the fulcrum, there is a
single weight. This weight must be balanced by
a stated weight plus some unknown additional
weight. The participant determines the unknown
additicnal weight by subtracting the stated
amount of weight {1) from the total (3.

Abstract Balance Beam. In the abstract Balance
Beam tasks (Figure 1, second example), the
distances between the weights and the fulerum
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are no longer held constant, as they were on the
concrete Beam, Therefore, when determining
the amount of weight necessary to balance a
given weight on the opposite side of the beam,
the participant must consider both weight and
distance. We created tasks with the following
constraint. The distance between the fulcrum
and the weight on one side of the beam is
equal to the weight on the other side of the
beam. Similarly, the weight on cne side of

the beam is equal to the distance between the
fulcrum and the weight on the other side of the
beam. Because of this constraint, torque can
be calculated either by summing weight and
distance or by taking their product:

The task requires the participant to solve for
a single unknown variable. But because the par-
ticipants performing at this complexity order have
not acquired the true rule for caleulating terque
(the product of weight and distance), they will
only consistently solve balance beam problems
built with the aforementioned constraint, Apply-
ing the additive rule to beams that have not been
built with this constraint {i.e., formal Balance
Beams) produces incorrect solutions.

Formal Balance Beam. In Inhelder and

Piaget’s formal balance beam (1958), the task
was to make the beam balance by moving

the weights toward or away from the fulcrum
and by increasing or decreasing the size of

the weights. The beam is in balance when the
torques on each side of the fulerum are equal in
magnitude, where torque is equal to the amount
of weight times its distance from the fulcrum.
The formal Balance Beam tasks in the present
instrument (Figure 1, third example) require the
participant to use the multiplicative rule to find
an unknown weight or distance that will make
the beam balance.

Systematic Balance Beam. A systematic
Balance Beam task presents two formal
balance beams to the participant. The same
two unknown quantities (weights or distances)
must be determined for both beams. In order to
find the unknowns, the participant is required
t0 salve a set of simultaneous equations. The
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participant must relate two formal operational
equations to solve these simultaneous
equations.

Table 1 shows some anticipated response
patterns, according to the orders of hierarchical
complexity of the tasks at each complexity order.
Not all respondents are expected to conform to
one of these response patterns; they can be con-
sidered prototypical. Some subjects may be able
to correctly answer some, but not all of the prob-
lems at the complexity order above which they
can answer all problems correctly. Additionally,
it is to be expected that some respordents will
make isolated errors as a consequence of factors

Conerete Task
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Circle the unknown weight, X, that will balance the following beams:
Abstract Task
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unrelated to their overall stage of performance,
such as flaws in the instrument design and varia-
tions resulting from the method of administra-
tion., Further, because this is a multiple-choice
instrument, guessing is possible and should cause
a certain amount of random variation, Neverthe-
less, in a Rasch analysis, if the overall response
patterns are similar to the patterns in Table 1,
groups of item estimates from each complexity
order should cluster together with gaps between
these groups,

In the following Rasch analysis we examine
the overall pattern of item difficulties and person
abilities, Then, saltus analysis (Wilson, 1989) is
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Figure I. Examples of balance-beam tasks for each complexity order.

Table 1 )
Expected Performance Patterns

ltems
Petformances Concrete Abstract Formal Systematic
Preconcrate 00000 00000 Q000 000C
Concrete 11114 00000 0000 0000
Abstract 11111 11111 0000 0000
Formal EEERE 11111 1111 0000

Systematic LALER 11111 1111 Lkkh!

used to investigate whether the expected response
patterns occur with enough regularity to suggesta
step-like discontinuity between successive orders
of hierarchical integration.

A saltus analysis is appropriate here because
it determines whether the difficulty of a group
of items is significantly different for groups of
persons who have different ability estimates.

These differences are catled second order discon- -

tinuities. Saltus analysis is related to the family
of logistic models (Spada and McGraw, 1985),
but is distinguished from members of that family
by the inclusion of a latent group membership
parameter. For similar examples of the use of
saltus, see (Draney and Wilson, 2005; Draney and
Wilson, 2007; Draney, 1996; Fieuws, Spiessens,
and Draney, 2004; Mislevy and Wilson, 1996;
Wilson, 1989).

Analysis

Initially, a Rasch moedel of the data was
estimated with the software, Quest (Adams and
Khoo, 1993). Overall, the results of this analysis
support the claim that the Balance Beam Task
Series measures a single dimension of per-
formance. Reliability of the item estimates is
.97,with a mean infit mean square of .94 (8D =
.13). Standard errors of the item estimates range
from .28 to 1.03 (See Table 2). All of the items
have infit meansquares that are close enough to
the expected value of 1 to fit the model. However,
the outfit meansquares are less consistent, with
formal item 4 and systematic item 1 exhibiting
positive misfit, indicating that performance on
these items is more erratic than expected. This
problem is discussed further below, Reliability
of case estimates is .77, with a mean infit mean
square of .95 (S0 .64). This low reliability for
the person estimates reflects the small number of
jtems in the Balance-beam task series.

The distribution of person and item estimates
is shown in Figure 2. The25 participants who had
perfect scores are not included. Performances
with positive infit #s over 2.00 are indicated
with ¥, while performances with negative infit
ts below —2.00 are indicated with Z, Patterns
of fit will be discussed further below. Item dif-

e TR
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ficulties, with two exceptions—systematic 1 and
formal 4—conform to the anticipated hierarchy.
As expected, difficulty estimates for the abstract
and formal order items are clearly differentiated,
though, contrary to expectations, there is neither
a clear differentiation between the concrete and
abstract items (likely due to the small number of
individuals performing at the concrete stage), nor
the formal and systematic items.

Person fit is not as good as jtem fit. 21 out of
120, or 17.5% of the performances fail to fit the
Rasch model. Thirteen (10.8%) of these exhibit
negative misfit. All 13 share the specific pattern of
response shown in Table 3, case 132, Interestingly,
this type of performance is entirely consistent
with Commons’ theorized response pattern. The
fact that cases consistent with the theory misfit
the model is strong evidence that the pattern of
performance is not adequately modeled by the
Rasch estimates.

Cases with positive misfit comprise 6.7%
of the sample. In Table 3, Case 99, for example,
is at the same level of performance (.56) as case
132, but in this instance, the respondent has
correctly answered some formal and systematic
items while missing several abstract items. This
pattern of response clearly violates performance
expectations.

Case 98, also at .56 logits, fits within the pa-
rameters of the present model. In this instance, the
respondent deviates from the expected pattern of
performance by correctly answering formal item
3, while incorrectly answering abstract item 3.
Because the Rasch model is probabilistic, a range
of variation from the expected pattern can occur
witheut causing misfit.

Performances at the juncture of the formal
and systematie levels are more problematic than
those at the juncture of the abstract and formal
levels. Although three instances of the anticipated
formal performance occur, as in case 076 in Table
3, there are also two instances of the pattern found
it case 015, {This pattern is problematic, and will
be discussed further below.) Most performances
around this level of difficulty have a mixture of
correct formal and correct systematic answers,
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Table 2

Fit statistics for Balance Beam items

ITEM WAME |SCORE MAXSCR| THRSH | INFT OUTFT INFT OUTET
| 1 1 1 HNSQ MHSQ £ t

1 Concrete 1 ] 94 120 | =4.01 | .17 .06 0.0 B
] 4 1.03)
1 i 1

2 Concrete 2 1 83 120 | =3.29 | .81 .15 -1 2
{ | 751
: 1 }

3 Concrete 3 ) 93 20 | -3.29 | .88 iy Q.0 q
| 1 V75 1
| 1 l

q Concrete 4 1 9 120 | -2.24 1 .68 3.29 -.2 1.5
| ! 510
1 ! 1

5 (Concrete § 1 89 120 | =-2.02 | .95 1,02 0.0 4
1 l AT |
1 1 |

[} Abstract 1 I B lz0 1 -2.02 | .98 .1 -2 z
] i .47 1
1 1 I

7 Abstract 2 [} 41 120 | -.B87 1 1.1 1.63 ] 1.0
| l 34
1 I 1

a Abstract 3 1 85 120 | -1.35 1 1.01 2.75 1 1.7
I l .38 1
1 1 1

9  Abstract 4 ] B2 120 | -.98 | 1,13 2.21 [ 1.5
1 1 .35 |
l 1 !

10 Abstract 5 | 78 120 | -.57 | .97 1,67 =-.1 1.2
1 1 311
l I 1

11 Formal 1 | a3 120 | 2.3 1 1.0z 1.32 2 1.0
1 | 26 |
| 1 1

12 Formal 2 1 32 120 | .44 |, .81 .69 -1.5 -.4
1 1 26 (7
1 1 I

13 Formal 3 | 31 120 ) 2.51 1 5% B2 ~l.1 =.4
1 1 .21 1
I 1 1

14 Fozmal 4 I 22 120 | 3.16 | .62 4.3% -1,1 4.6
| i .29
1 1 1

15 Systematic 1 | 44 120 ( 1,70 { 1.05 1.;1&’ 5 2.9
1 1 28 ) #
| i I

16 Systematic 2 ] 28 120 | 2.71 | .78 .56 -1.7 -1.2
1 1 .27 |
! ! )

17 Sysatematic 3 1 26 120 ) 2.86 | 1.09 .19 7 -4
1 1 .28 |
1 1 1

18 Systematic 4 1 26 120 | 2,86 | 1,12 1.12 .9 4
) I .28 |
1 1 1

Mean 1 ] 9.00 | .94 1,45 -.1 .5

s ) | 2.53 1 .13 1.24 E:] 1.4

N = 120, L = 18, Probability lavel = .50

as in case 44 (Table 3). In light of the mixture of
patterns, it is not surprising that the formal and
systematic items are not clearly differentiated in
Figure 2.

Saltus Analysis

To siudy the gappiness in our data, we per-
formed a saltus analysis (Draney and Wilson,

2005; Draney and Wilson, in press; Draney, 1996;
Fieuws et al., 2004; Mislevy and Wilson, 1996;
Wilson, 1989). A saltus analysis is a mixture
model extension of the Rasch mode] (Mislevy and
Verhelst, 1990; Rost, 1990). Whereas a traditional
partial credit analysis determines the probability
of a piven subject performing a given item in
terms of item difficulty (delta) and subject abil-
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Table 3

Sample Performances and Fit Statistics .

Case Fit Ability Infitt  Concrete Abstract Formal Systematic
132 A7 .56 -2.09 11111 11111 Qooo 0000
099 2.79 56 2.27 11111 10010 1000 1001
086 1.16 56 45 11111 11011 0010 0000
076 1,07 2.66 1.07 11111 11111 111 Qooo
015 0.99 2,66 04 11111 11111 0000 111
044 76 2.66 -1.18 11111 . 11111 1100 1000

N= 120, L = 10, Probabiity Lavel = 50

L1

K0T Y Pommal 4
20 20 N
|
KRCAXYY 3“:%2 raiemd
Formald
Formal Formal.2
patibiicid
20
KI000O0E XX 0N System.)
18 AXR0CO0L
prerrrrrrrrsiridg
2 XKI00UXY
A Absiraclb
Absuact2
1.0 00 RY Absiacl.d
Absiracld
20 XX Bl Gancrate.5 Abairact1
Cancraled
-0
Conerets.2 Conereta.d
“+0 YY) Concrele.

Each X, ¥, or Z reprosants 1 parikdpant

Figure 2. ltern and case estimates for balance-beam data.

ity (beta), a saltus analysis introduces item and
subject stage as a third concept. This additional
concept (along with the parameter{s} that em-
body it) can help to determine whether the gap-
piness and systematic shifts in item misfit present
in the earlier two parameter Rasch analysis can

"be explained as stage change.

The saltus model is based on the assump-
tion that there are H developmental stages in the
population of interest. A different set of items

represents each one of these stages, such that only
persons at or above a stage are fully equipped to
answer the items associated with that stage cor-
rectly. The saltus model assumes that all persons
in stage h answer all items in 2 manner consistent
with membership in that stage. However, persons
within a stage may differ by proficiency.

To deseribe the model, suppose that, as in the
partial credit model (Masters, 1982}, the random
variable X, indicates the response to item i. Items
have J, + 1 possible response alternatives indexed
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J=0,1,...,.J. The parameter indicating step j for
item { will be indicated by 6 the vector of all
B, by B

In the saitus model, a person is characterized
by a proficiency parameter €, and an indicator
vector for stage membership ¢,. [fthere are H po-
tential stages, ¢, = ($,,.. ., 3,,), where ¢, takes
the value of 1 if the examinee # is in stage # and 0
if not. Only one ofthe ¢, is theeretically nonzero.
As with 0, values of %, are not observable.

Just as persons are associated with one and
only one stage, items are associated with one and
only one stage, Unlike person stage member-
ship, however, which is unknown and must be
estimated, item stage is known a priori, based on
the theory that was used to produce the items. It
will be useful to denote itemn stage membership
by the indicator vector b, As with ¢, b,= (5, .

» by), where b, takes the value of | if item i
belongs to item stage X, and 0 otherwise. The set
of all b, across all items is denoted by b,

The equation:
P{X,y =716, =LB7, )
expE(B,, =B+

= : &)

Zepo(G -8, +'rhk

1=0 /
indicates the probability of response j to item i.
The saltus parameter T, describes the additive
effect—paositive or negative—for people in stage
# on the item parameters of all items in stage &
In developmental context, this often takes the
form of an increase in probability of success
as the person achieves the stage at which an
itern is located, indicated by 7,, > O when s > &
(although this need not be the case). The saltus
parameters ¢an be represented together as an H
by H matrix T.

The probability that an examinee with stage
membership parameter ¢, and proficiency 8, will
respond in category j to item { is given by:

n*iny

=TIT1P(X 0 = J16.08m =L, 7y 3. (2)
h Ok

P(X 5 18,.8,,b,,B, ,T)

Assuming conditional independence, the
modeled probability of a response vector is:
P(X,=X,16,.1,.b,.B,T}

=l:[l:[HP( nu”"ul ' nh""]sbn"'ht)w'-(:s)

The model requires a number of constraints
on the parameters. For item step parameters, we
use two traditional constraints: first, By =0 for
every item, and second, the sum of all the B, isset
equal to zero, Seme constraints are also necessary
on the saltus parameters. The set of constraints we
have chosen is the same as that used by Mislevy
and Wilson (1996), and will allow us to interpret
the saltus parameters as changes relative to the
first (lowest) developmental stage, Two sets of
constraints are used. -First T, = 0; thus, the dif-
ficulty of the first stage of i :tems is held constant
for all person groups; changes in the difficulty of
items representing higher stages are interpreted
with respect to this first stage of items for all
person stages, Also T, = 0 ; thus, items as seen
by person stages higher than 1 will be interpreted
relative to the difficulty of the items as seen by
petsons in the lowest developmental stage.

As in Mislevy and Wilson (1996), the EM
algorithm (Dempster, Laird, and Rubin, 1977) is
used to estimate the structural parameters for the
model. Empirical Bayes estimation is then used
to obtain estimates of the probabilities of stage
membership for each subject, as well as profi-
ciency estimates given membership in each stage.
A person is said to be classified into the stage for
which that person’s probability of membership
is highest,

The Model of Hierarchical Complexity

makes no predictions about gappiness. It does -

predict that when items are of identical hierar-
chical complexity, differences in performance
will be explained by the presence of differences
among items in horizontal complexity: prior
exposure, training, etc. It also predicts that when
horizontal complexity is held constant among
items of identical hierarchical complexity, dif-
ferences in performances will be explained by
differences in hierarchical complexity. In such
controlled circumstances, hierarchical complex-
ity should predict the order in which proficiency
is demonstrated.

The Commeons stage-transition model does
predict that toward the end of a transition from
one complexity order to the next, developmental
change occurs more rapidly. Changes in per-
formance that occur over time are by definition
dynamic. However, in a cross-sectional study,
they may appear as gaps (i.e., Second order
discontinuities) in a static representation of item
difficulty. The saltus model provides a tool for
studying these discontinuities.

In order to perform a saltus analysis, groups or
classes of performance are specified. Participants
are grouped by their performances on the items
of each class. For example in a two class Saltus
analysis, participants who perform successfully
on items of the first class but fail items of the
second class are grouped in the first class. Par-
ticipants who perform items of hoth classes are
grouped in the class associated with the greater
difficulty. Like the Model of Hierarchical Com-
plexity, the saltus model demands that those who
perform items of the more difficult class also
master items of the less difficult class. However,
assignment of participants to a class is probabi-
listic. Performances that violate the assumptions
of the Saltus model will have a significant prob-
ability of belonging to either class.
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In the present case, we conducted  series of
pairwise analyses in which we examined perfor-
mance on concrete versus abstract, abstract versus
formal, and formal versus systematic classes,
These were followed by an analysis in which we
specified a concrete/abstract class, contrasting
performance in this class with performance in
the formal class, and an analysis in which we
specified the same concrete/abstract class, con-
trasting performance in this class with a formal/
systematic class.

The results of the concrete versus abstract
analysis did not support the notion of a stage shift
or second order discontinuity between these two
complexity orders. Because only three partici-
pants performed at the concrete level, it is unlikely
that this result says very much about the balance
beam instrument. Note the large error ranges for
items 1-5, shown in Table 2.

The pair-wise analysis of abstract versus for-
mal classes is more revealing, Figure 3 shows the
item difficulties for these classes. Note the large
gap between the difficulty estimates for formal
and abstract items in Class 1, and iis complete
disappearance in Class 2, Clearly, the formal items
are much harder, relative to abstract items, for

Class 1 Class 2
Abstract Formal
For 4

For2, For3
For1

Ford
Abs 5 Abs 5, For 2, For 3
Abs 2, Abs 4 Abs 2, Abs 4, For 1
Abs 3 Abs 3, Sys 1
Abs Abs Y

Figure 3. Difficulty estimates by class for abstract vs. formal classes.
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members of Class 1 than for members of Class 2.
This result supports the hypothesis that a second-
order discontinuity occurs at the juncture of the
abstract and formal complexity orders.

Figure 4 shows the pair-wise analysis of
formal versus systematic classes. There is no gap
between formal and systematic items in Class I.
In fact, item difficulties for Class 1 and Class 2
are almost identical. Further, the formal items are
more difficult for both groups than the systematic
items, Possible reasons for this reversal are dis-
cussed further below.

Because we did not find evidence of a second
order discontinuity between the concrete and
abstract orders, we combined the concrete and
abstract classes into a single concrete/abstract

class for the remaining analyses. Figure 5 shows o
pair-wise analysis of concrete/abstract versus for-
mal classes. As in the second analysis, a large gap
is apparent between concrete/abstract and formal
items in Class 1. Once again, this gap disappears
in Class 2. The formal items are much harder, rela-
tive to concrete and abstract items, for members of
Class 1 than for members of Class 2, This result
lends additional support to the hypothesis that a
second-order discontinuity occurs at the juncture
of the abstract and formal orders.

Because we did not find evidence of a sec-
ond order discontinuity between the formal and
systematic complexity orders, we combined the
formal and systematic classes into a single formal/
systematic class for the final analysis. Figure 6

Class 1 Class 2
Formal Systematic
For 4 Ford
Sys 3, Sys 4 Sys 3, Sys 4
For 2, For 3, Sys 2 Sys 2, For2, For3
For1 For1
Sys 1

Sys1 7

Figure 4. Difficulty estimates by class for formal vs. systematic classes,

Class 1 Class 2
Concretalabstract Formal

P

Ford 4

For 2, For 3
For1

For 4
Abs B

Abs 5, For 2, For3

Abs 2, Abs 4 Abs 2, Abs 4, For 1
Abed Abs 3

Con 5, Abs 1 Con 5, Abs 1
Cand Con4

Con2,Cond Con2 Cond
Con1 Con 1

Figure 5. Difficulty estimates by class for concrete/abstract vs, formal classes.

shows the results of this pair-wise analysis of con-
cretefabstract versus formal/systematic classes. A
large gap is apparent between concrete/abstract
and formal/systematic items in Class 1, though
the gap in this analysis is somewhat smaller than
in the second and fourth analyses, due to the low
difficulty of systematic item 1. Once again, this
gap disappears in Class 2. The formal/systematic
items are much harder, relative to concrete and.
abstract items, for members of Class 1 than for
members of Class 2. This result lends additional
support to the hypothesis that a second-order
discontinuity occurs at the juncture of the abstract
complexity order and the complexity order that
follows. However, it appears from this result
that the systematic items are easier than the
formal items, rendeting the precise nature of the
transition unclear. The likelihood ratio for this
saltus analysis was compared with the likelihood
ratio for the Rasch analysis. The saltus model
predicts performance on the balance beam task
with greater accuracy than the Rasch model (x>~
71.91,df=4,p <.01),

Discussion

The Model of Hierarchical Complexity
prediets that performance on items of a given
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hierarchical complexity will be consistent within
individuals. In other words, proficiency at per-
forming on an item of a given order of hierarchical
complexity increases the probability of perform-
ing other items of the same order of complexity.

Further, the model predicts that individuals
who are proficient at solving problems of a par-
ticular order of hierarchical complexity will also
be proficient at solving problems of lower orders
of hierarchical complexity. They should also have
a lower probability of performing acourately on
items whose order of hierarchical complexity
is beyond the complexity order at which they
generally perform. In the Rasch analysis, these
probabilities were expressed in terms of the
hierarchy of items and persons on the items by
persons map. With the exception of two items,
systematic 1 and formal 4, item difficulties were
ordered as expected, though there was not as much
differentiation between the concrete and abstract
items and the formal and systematic items as we
expected, based on the Model of Hierarchical
Complexity. The lack of differentiation between
the concrete and abstract problems could be as-
sociated with the small number of participants
who performed at the concrete level, Note the
large error ranges for items 1-5.

Class 1 Glass 2

Ford
w3

For 2, Far 3,
' e

Sys1

Ford

Syad, Sysd

ApsS Aba 6, Sya 2, For 2, Far3
Aba2, Abs 4 Aba 2, Aba 4, Fory

Aba3d Abs 3, Sya
Con 5, Abs 1 Con 5, Abs 1

Cond Cond
Conz,Sond Con g, Cond

Con1 Con 3

Figyre 6. Difficulty estimates by class for concretefabstract vs, formal/systematic

¢lasses.
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The lack of differentiation between the for-
mal and systematic items is more problematic
for the Balance-Beam instrument and Commons®
theory. Our first concern was the low difficulty
estimate for systematic item 1 (shown in Figure
1). In order to understand why this item might be
easier than all of the formal and the remaining sys-
tematic iterns, we compared its form and content
with the other systematic items. We discovered
that this item could be solved by coordinating an
abstract, addition based equation with a formal,
muitiplication-based equation, while the other
systematic items required the coordination of
two formal, multiplication based, equations. This
would explain why the item is easier than the
other systematic items, and it may also explain
why it is easier than most of the formal items, If
a formal operation is the coordination of abstract
operations, then systematic item 1 could well be
an easier formal item than the intentionally formal
items on this instrument, because it provides more
support. In effect, the need for coordination is
more explicit when there are two balance beam
problems to solve than when there is. only one.
Whereas the need for coordination cgn be over-
looked in the case of the formal items, it is made
explicit in the systematic items. This problem is
compounded in the Balance-Beam instrument,
because the rule for balancing the beam' is ex-
plicitly provided prior to the presentation of th
systematic items. This rule is not provided pri6r
to the formal items. It seems likely that some
able individuals carelessly applied the abstract
order additive rule to the formal balance beams,
but switched to the multiplicative rule once it
was described.

The results of the saltus analysis, though they
support one of the hypothesized second-order
discontinuities between stages, also magnify
the failure of the formal and systematic items
to accurately measure what they are intended to
measure. When Class is included as a dimension,
difficulties of the formal and systematic items are

1 The diagrams in Figure 1 repsesent balance beams, The
torque(s} on the left side of the balance beam balance the
torque{s) on the right side, where torque is equal to weight
times distance from the fulcrum (i.e., distance from 0).

even less differentiated than in the Rasch analysis.
If this pattern is the result of characteristics of
the instrument rather than fundamental flaws in
the theory, then it is clear that some instrument
redesign is necessary.

We suggest the following. (1) Increase the
number of items within each complexity order in
order to increase the reliability of person estimates
and saltus parameters. When the number of items
within a saltus class is low (as it is in the present
study), the reliability of the saltus parameters is
also diminished. (2) Consider eliminating the
multiple-choice format, Problems at the highest
levels can be solved using operations of a lower
order of hierarchical complexity by substituting
the various multiple-choice responses until the
correct response is found. This makes it very
difficult to know what abilities the items are
actually measuring. Further, the multiple-choice
format permits guessing, adding “noise” that is
difficult to interpret. (3) Redesign systematic
item 1 to make it impossible to solve it with an
addition strategy.

The construction of items that meet strict
criteria for hierarchical complexity is a challeng-
ing task. Commons’ effost to create items with
task demands appropriate to specific complexity
orders appeat to have been more successful at the
lower levels of hierarchical complexity than at the
higher levels, The present analysis has provided
useful information that can gnide ongoing efforts
in this area. ‘
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