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In the controversy over matching versus maximizing there are two traditions.
According to the first, free operant concurrent choice procedures are used ; what
is thought to be matched or maximized is the amount of reinforcement obtained
for responding over a period. Previous illustrations of matching (e.g., Hermstein,
1970, Chapter 19 of this volume, and Herrnstein and Vaughan, 1980) and maxi-
mizing (Rachlin, Kagel and Battalio, 1981), which are accounts of individual
choice behavior in operant conditioning experiments, have looked only at the
aggregate amount of reinforcement received on a particular schedule. In many
situations, such as the concurrent variable-interval, variable-ratio (conc VI VR)
schedules described by Herrnstein and Heyman (1979), aggregate data are suffi-
cient to indicate that the experimental subjects do not allocate behavior in a way
that would maximize obtained aggregate reinforcement. As Herrnstein has men-
tioned (personal communication 1981), it is always possible to add constraints
that “*save” maximizing in this situation. One of these could be that the subjects
were not fully sensitive to the contingencies applied to their behavior. Then, the
deviation from obtained aggregate maximization would often be roughly con-
sistent with a hypothesis that aggregate relative rate or probability of behavior is
“matched” to aggregate obtained relative rate or probability of reinforcement.

Portions of this chapter were reported at the Harvard Symposium on Quantitative Analy-
ses of Behavior, 1979, and the Midwestern Association for Behavior Analysis, Chicago,
1976, by A.A. Thompson, M.P, Krupa, J.J. Andersen, and M.L. Commons, and at the
Eastern Psychological Association, Boston, 1977, by M.P. Krupa, M. Hirvonen, J. Pohl,
M. Lamb, and A A, Thompson. These authors collected the 4-cycle discrimination data,
wrote the computer programs, and prepared the preliminary reports, The line of research
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26 FINE STRUCTURE IN INSTRUMENTAL RESPONDING

In the second tradition discrete-trial noncorrection choice procedures are
used; what is thought to be matched or maximized is the amount of reinforce-
ment programmed (e.g., Estes, 1957; Neimark and Estes, 1967). However, in a
discrete-trial choice situation, the four accounts only make two distinguishable
predictions. Matching of obtained reinforcement and maximizing of either
obtained or programmed reinforcement all predict that one alternative comes to
be chosen to the exclusion of others. The fourth possibility, that of matching of
programmed or expected payoff, appears as undermatching of obtained payoff.
Estes (1957) proposed a matching law for such expected payoff in a probability
learning situation. With pigeons, matching to expected payoff has been found in
a discrete -choice reinforcement density discrimination (Commons, 1979, 1981).
Here, unless otherwise specified, matching or maximizing refer to programmed
reinforcement or expected payoff rather than obtained reinforcement.

The aggregate data in both traditions, however, are ill suited to examination
of the possibly more sophisticated local maximizing model proposed here. One
of the purposes then of this chapter is to account for undermatching of obtained
reinforcement and matching of expected payoff with such a model. It is hypoth-
esized that at the time of each individual choice, the subject acts so as to maxi-
mize the expected utility of reinforcement resulting from that particular choice,
However it has an incomplete awareness of the effects of the choice that are
available to it.* More specifically, this model supposes imperfect discrimination
of stimuli, including reinforcers, and even more imperfect memory for past

leading up to the discrimination experiment was developed under the guidance of John
Anthony Nevin. John R, Ducheny collected the 6-cycle discrimination data and he and
Joel R. Peck supervised the data collection for the preference experiment. The data acqui-
sition on the preference experiment was carried out with the support of Richard J. Herrn-
stein. The computer programming was done by Rose P. Meegan and Gilbert Yee with assis-
tance from Wei-o Huang and Katrine Norris. The computer analysis was performed at the
Northeastern University Computer Center. The graphs were made by Rose P, Meegan, Brian
D. Cabral, Martin N, Davidson, and Rodney Wong. Drafts were read and edited by Patrice
M. Miller, Sherry Luna, James E. Mazur, Margaret Vaughan, Theodore L. Allen, and Philip
F. Kelleher. The recommendations made by R. Duncan Luce and Richard J. Herrnstein after
hearing presentations of the material were invaluable, Howard Rachlin and Richard J. Herrn-
stein, the coeditors of this volume, gave considerable time and effort toward making the
manuscript more readable. Research was supported by grants to Richard J. Herrnstein, by
grants from the Dare Association, Inc., to the first author and a National Science Founda-
tion Fellowship to the second author.

a. A simpler hypothesis would be that the subject maximizes the expected value of rein-
forcement, measured, say, in milligrams of grain received. However, the reinforcing value to
the subject of a food pellet need not be proportional to its weight, and so a rationally maxi-
mizing subject need not regard the prospect of a 50 percent chance of receiving 60 milli-
grams and a 50 percent chance of receiving 20 milligrams as equal in value to a certainty of
receiving 40 milligrams of grain. In order to take this into account, it is assumed instead that
the subject maximizes the expected value of the utility of the reinforcement, where the util-
ity is taken to be some monotonically increasing (but not necessarily linear) function of the
amount of grain received.
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events. These two phenomena can explain the observed deviations from per-
formance values predicted by full-information aggregate maximization. Whether
or not the local maximizing model that contains these two hypotheses is good,
however, it is easy to support and difficult to reject with aggregate data. This is
because the values of the model’s parameters relating to discriminability and
forgetting cannot be directly estimated from aggregate level observation. They
appear as free parameters that may always be adjusted to make the theory’s pre-
dictions roughly consistent with the aggregate data. The predictions generated in
this fashion are not easily disproved; accordingly, confirmation of the theory is
trivial.

The studies reported in this chapter seek to determine the reinforcement
value of sequences of reinforcers at the local, nonaggregated level. Value is mea-
sured using two kinds of choice procedures. In the first procedure, called dis-
crimination (Experiments 1 and 2), the subject’s choice is reinforced, SR, for
correctly determining from which of two reinforcement schedules, one rich and
one lean in reinforcement, a given reinforcement sequence has been taken. In
Experiment 1, one of sixteen different sequences of reinforcers was presented on
a trial; in Experiment 2, one of 64. For each different sequence of reinforcers
the proportion of trials on which the subject indicates that the richer density
schedule has been sampled is separately recorded. This proportion reflects the
richness or perceived value of that sequence. This procedure makes it possible to
examine how sequences of reinforcers are valued at the local level.

In the second procedure, called preference ( Experiment 3), the subject allo-
cates its time and responses between two keys in the first link of a concurrent
chain schedule. One of the second links of this schedule consists of a comparison
sequence of reinforcers and the other a standard sequence of reinforcers; the
sequences used here are the same 16 sequences used in Experiment 1. In the
comparison link, the sequence of reinforcers is changed to a new sequence only
after its value has been determined, In the standard link, the sequence of rein-
forcers is always the same. The number of milligrams of food reinforcement
delivered within the standard link is varied until the amount required to make
the subject indifferent between the two second links is found. This value that
reflects effective value is recorded for different sequences of the comparison
schedule.

Both the discrimination and the preference procedures allow sequences of
reinforcers to be scaled as to relative aggregate reinforcement provided, with the
discrimination experiments indicating the perceived value and the preference
experiment indicating the effective value. It will be shown that these two mea-
sures of aggregate reinforcement value coincide closely.

In addition, because the value of each sequence of reinforcers is separately
measured, it becomes possible to determine the disaggregated effect of each indi-
vidual reinforcer according to its position in the sequence. The more sophisti-
cated local maximizing hypothesis just described yields quite specific predictions
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as to what the relative reinforcement values of different sequences should be,
The assumption of a forgetting process is no longer a rationale for the introduc-
tion of ad hoc parameters, as in the case of aggregate data, since the precise
nature of the forgetting process may be determined by comparing the aggregate
values of different sequences of reinforcers. Consistency of the data with the
sophisticated local maximizing hypothesis is no longer trivial. This hypothesis
will be shown to account in detail for the relative perceived values, and, since the
effective values have the same structure as do the perceived values, it is believed
that a similar maximizing model can account for the effective values. Therefore,
apparent matching in aggregated data may be accounted for by a local maxi-
mizing model allowing for imperfect discrimination and memory loss.

EXPERIMENT 1: DISCRIMINATION PROCEDURE

Each of four White Carneaux pigeons was run in one 256-trial session per day.
Trials consisted of a stimulus period followed by a choice period, as shown at
the bottom left of Figure 2-1. The task was similar to one in which the subject
identifies whether a randomly chosen urn is the rich one with three reinforcer
balls and one nonreinforcer ball, or whether the urn is the lean one with one
reinforcer ball and three nonreinforcer balls. On each trial there are four draws
from that trial’s urn; these draws take place in the stimulus period. After a ball is
drawn it is put back into the urn. After the four draws from the urn presented
on that trial, the subject indicates whether the sample came from the rich or the
lean urn; this takes place during the choice period.

The stimuli presented during the stimulus period are to be described macro-
scopically (the whole stimulus) and microscopically (the parts of the stimulus).
First there will be a general description of the procedure, including the stimulus
and choice periods, and then the contingencies in these periods will be described
more specifically.

The stimuli to be discriminated in the present study were samples from one
of two modified T schedules (Commons, 1979; Schoenfeld and Cole, 1972
Schoenfeld, Cumming, and Hearst, 1956: Weissman, 1961). The rich schedule
had the reinforcement SE* probability for a lighted center-key peck, C, of
p(SR*1C) = 0.75. The lean schedule had a p(SR*1C)=0.25.A sample from a
schedule consisted of 4 cycles, which in the standard case were each 3 seconds
in length. At the beginning of each cycle, the center key was illuminated, The
cycles, ¢; or just i, were numbered so that ¢4, occurring at the beginning of the
stimulus period, is the furthest from choice, and ¢, , occurring at the end of the
stimulus period, occurs just before the choice period. The first center-key peck
in each of the four cycles darkened the center key and was reinforced with a
probability of 0.75 (if the rich schedule was sampled) or 0.25 (if the lean sched-
ule was sampled). Although the reinforcement probability was neither 0 nor 1
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Figure 2-1. A stimulus example from a discrimination trial shown (op left)
by means of a state diagram for a sample from a 3-second cycle schedule to
illustrate what may happen if center-key pecks occur (and do not occur)
when reinforcement has been programmed (or not). In reality it would be
very unusual because there is a cycle without a peck occurring in it. The con-
tingencies during an entire trial are shown (bottom feft). The stimulus
period contains substimuli of the form shown in the top left portion. The
choice period contain a single reinforcer for correct choice or extinction for
incorrect ones. The choice period immediately follows the stimulus period.
There is no intertrial interval.

The second-link reinforcing stimulus from a preference trial (top right) is
the mirror opposite of the stimulus example shown on the left. It illustrates
what may happen if side-key pecks occur (and do not) occur when rein-
forcement has been programmed (or not) on cycles during the second link.
In reality it would be very unusual because of the cycle with no peck occur-
ring in it. The contingencies during an entire trial are shown (bottom right).
The choice period consists of a concurrent VI 12-second, VI 12-second
schedule. The first response after the interval completes the VI requirement.
When the left requirement is met, the left-key changes color and has the
comparison sample substimulus programmed on it. Likewise, when the right
requirement is met, the second-link standard substimulus is presented on the
right key, which also changes color. There is no intertrial interval.
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on a cycle i, a center-key peck was (v; = 1) or was not (v; = 0) reinforced on
each of these 3-second cycles. Only the first center-key peck in any one cycle
was ever reinforced.

An example of what happens in a reinforcement schedule sample presenta-
tion, during the stimulus period of a trial, is shown in the upper left of Figure
2-1 for the substimulus 1110 (reinforcement programmed for ¢4, ¢, and ¢,,
but not ¢y ). Each cycle began with the illumination of the center key. Again,
this happens in all the samples. In the fourth cycle before choice (c4) the first
center-key peck, labeled 4, darkened the key and was reinforced. Likewise at
the beginning of the third cycle before choice (¢3) the center-key light came on
and the first center-key peck (labeled B) darkened the key and was reinforced.
The other center-key peck during the same cycle, labeled C, was not reinforced.
At the beginning of the second cycle before choice (¢,) the center-key light
came on again, There was no center-key peck during that cycle (an unlikely
occurrence). Therefore the center-key light remained illuminated into the first
cycle before choice (¢y), and the programmed reinforcer was not picked up. At
the beginning of the first cycle before choice (¢,), the center-key light just
remained on. The first peck in that cycle, labeled D, darkened the key. There
was no reinforcement programmed for this trial, so none was obtained. The next
center-key peck, £, had no effect since it was the second one in this cycle. For
the trial as a whole, only two out of three reinforcers were obtained. Although
this sample could have come from either the rich or the lean schedule, it was
more probable that it came from the rich schedule because it had three rein-
forcements programmed.

At the onset of the choice period the side keys were illuminated; the center
key stayed dark or was darkened in those rare cases where no key peck occurred
in the last cycle of the substimulus, Duration of the choice period was always
twice the standard or base length cycle, as shown in the lower left of Figure 2-1,
The first side-key peck, whether correct or not, darkened both keys, and no fur-
ther pecks were counted. If a substimulus sample from the rich schedule had
been presented on the center key, the first left-key peck was reinforced ( fixed
ratio-1, FR-~1, a hit or left correct); a right was not reinforced (extinction,
EXT, a miss or right error). If a sample from the lean schedule had been pre-
sented on the center key, the first right-key peck was reinforced (a correct
rejection or right correct); a left was not reinforced (a false alarm or left error).

Although three different standard cycle lengths were used—2 seconds, 3 sec-
onds, and 4 seconds (7" = 2, 3,4)—only the data for the 3-second standard are
reported here. Each was run until the birds stabilized. In daily sessions the stan-
dard (base) cycle length was of standard length (T seconds) on 224 trials, dou-
bled (7" multiplied by 2) on 16 probe trials, and tripled (7 multiplied by 3) on
another 16 probe trials. The position of the probe trials within a session was ran-
domly distributed.
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Stimulus Description

Division of the stimuli into four levels of analysis is crucial for understanding the
relation between stimuli at the aggregated level and stimuli at the more disaggre-
gated levels. There are four levels of description of the stimuli:

1. On a macro level each probabilistic reinforcement schedule, either the rich
(p = 0.75) or the lean (p = 0.25). is viewed as a single stimulus, here called
Siich (Sg) and Sye,q (S ), respectively; sampling considerations are of no con-
cern. These two stimuli are equivalent to cued random-interval (RI) or variable-
interval (V1) schedules with a T-second limited hold and average intervals equal
to 4/3T second (rich) and 47T seconds (lean), where T' = 3 seconds for the stan-
dard case being considered. On a variable schedule (V1) after a certain amount
of time (interval) the first response is reinforced.

2. At the molar level all samples from the two reinforcement schedules
(called at this level substimulus samples), with the same number of reinforcers
are viewed as the same stimulus. Each substimulus S, has a reinforcement den-
sity D(S,,) equal to Ny, the number of center-key-peck reinforcement oppor-
tunities over the four cycles in the substimulus. Density, the defining character-
istic of a stimulus at this level of analysis, ranges from 0 to 4 reinforcers per
substimulus, D(S,) = Ny =0,1,2,3,4, giving rise to 5 such stimuli, desig-
nated SNd‘ as shown in Table 2-1. This level of stimulus description distin-

guishes among the number of reinforcements within a substimulus; it does not
distinguish among substimuli with the same number of reinforcers but with
those reinforcers programmed on different cycles within the 47-second stimulus
period. The frequency of the occurrence of the possible samples with a given
aumber of reinforcers is shown in the left panel of Figure 2-2 and in Table 2-1.
There are 16 possible sequences of reinforcement or nonreinforcement in a
4.cycle sample. The probability that a particular set of 4 events will occur was
obtained by expanding the binomial (p + q)* with p =0.75 or 0.25 and
g = 1—p. Actual presentation frequencies deviated somewhat from the ex-
pected frequencies because of sampling, as shown in Table 2-1. The modal and
mean density of the rich schedule is 3; the modal and mean density of the lean
schedule is 1.

3. At the molecular level the definition of a stimulus involves the sequence or
pattern of reinforcement in a sample. At this level substimuli are described not
with a one-digit density number but with a four-digit binary number, A number
like 0001 indicates a sample with 3 cycles without reinforcement opportunities
followed by 1 cycle with a reinforcement opportunity. The substimuli S, are
nembered from 0000 to 1111, The leftmost digit represents the cycle furthest in
time from choice ¢4, and the rightmost represents the cycle immediately before
choice ¢;.
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Figure 2-2. The distribution of reinforcement for the first center-key peck
(SR*IC) for 4-cycle (left) and 6-cycle substimuli (right) are shown. The
number of center-key pecks and proportion of trials on which reinforcement
occurs in a sample is shown for the rich (positive-slope hatching) and lean
(negative-slope hatching) schedules. The respective p (SR*/C) are 0.75 and
0.25 for the 4-cycle substimuli and 0.767 and 0.233 for the 6-cycle sub-
stimuli.
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4, At the micro level the definition of a stimulus depends on whether or not
there is a reinforcement opportunity on a particular cycle ¢;, i cycles before
choice, irrespective of what is programmed for its neighbors, There are 8 such
micro stimuli (4 with reinforcers on each of the 4 cycles and 4 without reinforc-

ers on each of the 4 cycles).

A molecular substimulus, even 0000 or 1111, could be sampled from either
schedule stimulus. What differed therefore was not the substimulus that could
be sampled from the schedule stimuli but the frequency with which a substimu-
lus came from the rich schedule or the lean schedule, These frequencies are pre-
sented in Table 2-1. A comparison of columns 1 and 2 with the last column in
the table shows that the greater the number of cycles in a substimulus having a
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reinforcement opportunity, the greater the likelihood that the rich schedule was
in effect. Therefore, the rich schedule was more likely to be in effect when 3 or
4 reinforcement opportunities were programmed, and the lean schedule was
more likely to be in effect when 0 or 1 reinforcement opportunities were pre-
sented on a trial. Substimuli with 2 reinforcement opportunities occurred about
equally often given either schedule. Again, when the rich schedule was in effect
p(SR*|L) increased. Birds were run until their performances stabilized. The
data reported here were collected in the 5 sessions following stabilization,

EXPERIMENT 2: SIX 3-SECOND CYCLE SAMPLES
Method and Procedure

The subjects and apparatus for this experiment were identical to those described
in Experiment 1, except that one less subject was used, The discrimination task
was similar to that used in Experiment 1, except that the number of cycles was
increased from 4 to 6. The two schedules to be discriminated were, again, two
overlapping distributions (stimuli) of reinforcement opportunities, one with
p (SR*1C) = 0.767 (the rich schedule) and one with p (SR*1C) = 0.233 (the
lean schedule). These probabilities will be treated as approximately the same as
for the 4-cycle experiment for purposes of later analysis, The stimulus on each
trial was one of the 64 substimuli that could be generated by taking samples of
size 6 from one of the two T schedule stimuli. The frequency of occurrence of
the possible samples with a given number of reinforcers for the 6-cycle case is
shown in the right panel of Figure 2-2. The modal density of the rich sched-
ule is 5 and the lean schedule is 1; mean value can be obtained by multiplying
the probability of occurrence of a reinforcer times the number of cycles (e.g.,
0.767 x 6 = 4.60 for the rich and 1.40 for the lean). The value of T was again
equal to 3 seconds, and there were no probe trials.

EXPERIMENT 3: PREFERENCE PROCEDURE

Each of ten White Carneaux pigeons was run in one 128-trial session per day. A
trial consisted of the first and second links of a concurrent chain schedule as
shown in the bottom right-hand portion of Figure 2-1. In the top half of Table
2-2, a simple version of a concurrent chain schedule is shown. In a concurrent
schedule two schedules are in effect at the same time, one on each key. The cen-
ter key is inoperative. The bird pecks either the right or the left key, The second
link on either key is activated by the completion of the contingency on the first
link. Both keys are freely available during the first link, but once the bird has
entered the second link on either key the other key is deactivated. In this simple
version the first link on both the right and the left keys is a 12-second variable-
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Table 2-2. Simple concurrent schedule compared with concurrent chain
schedule used here.

Simple Concurrent Schedule
VI 12 seconds —s= Reinforcer

VI 12 seconds —= Reinforcer

Concurrent Chain Schedule
V112 seconds —m v, v, v, v, onleft comparison key
VI 12 seconds —== 0 V.. 0 0 on right standard key
- { 0 milligrams
7120 milligrams

Vmg = varies

interval schedule, The second link is a single reinforcer. Completing the VI
12-second requirement on either of the keys would lead to the obtaining of the
reinforcer programmed for that key. In the more complex case shown both at
the bottom right of Figure 2-1 and bottom of Table 2-2 the single reinforcer
of the second link is replaced by one of two samples from a T schedule. There-
fore the second link’s 7 schedule sample on a given key serves as the reinforcer
for completing the requirement on the same key during the first link. Presum-
ably for this example different values of the reinforcers in the second link would
lead to differential responding on the left and right keys. The samples in the sec-
ond link are the same as those used in the 4-cycle discrimination experiment
(Experiment 1), so that the aggregation of sequences of reinforcers in the two
kinds of experiments may be directly compared, Again, a schematic diagram of
the first and second links is shown in the bottom half of Table 2-2.

In order to understand the contingencies in the second link let us return to a
short description of the reinforcement samples. Recall that the reinforcement
samples in Experiment 1 consisted of four 3-second cycles. A reinforcer is either
programmed or not on each cycle. A total of 16 such samples, called substimuli,
are possible, The 16 substimulus samples each consisted of four 3-second cycles.
Each cycle began with the illumination of the left key, and the first left-key
peck was (v; = 1) or was not (v; = 0) reinforced. Subsequent pecks during a
cycle were not reinforced. The cycles ¢; were numbered so that the ¢, was the
cycle at the beginning of the second link right after choice, and ¢, is the cycle
furthest from choice occurring at the end of the second link. Notice that this is
exactly the same as was done in Experiment 1, In both cases ¢, is the cycle
closest to choice and e, the cycle furthest away; what changes is where the
choice occurs relative to the four cycles. For the preference experiment, how-
ever, the binary-numeral notation for substimuli will be reversed. That is, 0111
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means v, =0, v, = 1, vy =1,v; = 1. This is so that left to right will continue
to indicate temporal ordering. An example of an unlikely response pattern to the
0111 substimulus sample is shown in the upper right of Figure 2-1. At the be-
ginning of the first cycle, ¢,, the key was illuminated. The first left-key peck
darkened the left key and was not reinforced. Although the reinforcement was
set up during the second cycle and in the actual experiment the bird would
always peck and obtain it, for the sake of illustration, a cycle without a peck is
shown here. Because there was no peck, no reinforcer was delivered during that
cycle and the light remained on. At the end of that cycle, the reinforcer was set
up again. In the third cycle after choice the bird did peck and obtained the rein-
forcer; the key immediately darkened. The same thing happened during the
fourth cycle, cg .

Two aspects of these reinforcement samples serve as independent variables:
(1) the pattern of reinforcement, that is, on which of the four cycles reinforcers
were delivered, and (2) the amount, in milligrams, of the reinforcer delivered on
a particular cycle. On the left key, the comparison key, the pattern of reinforce-
ment varied while the amount delivered on a cycle stayed constant. On the right
key, the standard key, the reinforcement amount was varied but the pattern was
always the same one. The conditions determining when these dimensions of the
reinforcement samples were varied will be described next.

On the left, comparison key, the peck that completed the VI led to the
comparison substimulus, The same comparison substimulus was present for a
minimum of 30 sessions. The maximum number of sessions it was run was de-
termined by conditions discussed later. Throughout the study all reinforcers
obtained by comparison-key-pecks in a cycle were 20 milligrams.

On the right, standard key, the peck that completed the VI led to the stan-
dard substimulus, OV, 00. In this substimulus no reinforcers were programmed
on the first, third, and fourth cycles. Reinforcement, consisting of varying num-
ber of pellets, was always programmed on the second cycle. The amount of rein-
forcement, Vmg, during the second cycle was varied by the experimenter. The
number of sessions that had a given value V,,, programmed depended on condi-
tions to be outlined. To get values such as 30 milligrams using just 20-milligram
pellets, 0.5 of the ¢, cycles would have two pellets and 0.5 would have one
pellet. A similar probabilistic delivery of reinforcement was used to generate
values smaller than 20 milligrams. In this second case, the hopper light still went
on when a reinforcer was to be earned, but the pellet was delivered probabilis-
tically to generate approximately any required value between 0 and 20 milli-
grams,

The treatment of probabilistic reinforcement as equivalent to certain delivery
of the mean reinforcement amount implicitly assumes that the utility obtained
from reinforcement is a linear function of amount. In fact, as will be shown,
utility is a slightly concave function of the number of pellets. But since the ex-

' ponent obtained for the power function is not too much less than one (approxi-
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mately 0.7), this method of interpolating values is reasonably accurate over the
range of values in question. An extrapolation of Mazur’s (1981) results shows
that probabilistic delivery of reinforcement is a reasonable procedure for obtain-
ing intermediate amounts.

Mazur, using a Stubbs-Pliskoff procedure (a concurrent interdependent pro-
cedure), showed that probabilistically delivered reinforcement, p (SR+) =0.50
was valued as 0.50 and p (S®*) = 0.33 was valued as 0.33 (in his procedure
relative value was measured by relative rate). In Mazur’s study, relative left-key
pecking rate, Rel B; (his measure of relative value) is equal to the rate of left-
key pecking, B; , divided by the sum of the left-peck rate and the right-peck
rate, By, Rel B; = By [(By + Bg). This same relation, between probabilistically
delivered reinforcement and relative rate (as defined for this situation) should
hold in the present situation, which uses a concurrent chain schedule (instead of
a simple concurrent schedule) where one of the pellets delivered in the second
link’s standard substimulus was probabilistically delivered as described before,
The probabilistic reinforcement p can be used to obtain a reinforcement amount
reasonably equivalent to the actual milligram value desired, as follows: For m =
number of pellets,

Vmg = m(20 mg) + p(reinforcement) x 20 mg = 20(p + m) mg

For example, to obtain a reinforcement amount equal to 10 mg, m would equal
0 and p would equal 0.5, and therefore V. = 0.5 x 20 mg = 10 mg.

Three kinds of information were recorded: first, rates of left-key and right-
key pecking during the initial links; second, which comparison substimulus was
programmed on the left key during the second link, and third, the amount of
food, Vs, delivered for the reinforced right-key peck in the second link stan-
dard substimulus 0V, 00. The amount of food delivered in the second link stan-
dard substimulus was varied in order to get the titrated amount of food. The
titrated amount of food was defined as the number of milligrams of food neces-
sary to produce indifference between the comparison and the standard. Such
indifference was defined as a relative rate of left-key pecking equal to 0.5 + 0.1
for 6 consecutive sessions. There also had to be 6 consecutive sessions for food
amounts that produced relative rates above the 0.5 indifference value and 6 con-
secutive sessions below.

The titrated amount of food Vmg was not the only parameter that was syste-
matically varied. After ¥y, had been found for a particular substimulus, the sub-
stimulus that served as the comparison substimulus was changed and a new Vmg
was obtained for the new substimulus. A given substimulus for which Vmg is
found is referred to as a point. This procedure was not carried out using all sub-
stimuli with all birds. Which birds were run on which substimuli is shown on the
left side of Table 2-3. Next to each substimulus number (listed in the column
entitled cycles) is a list of the titrated amounts obtained for that substimulus by
each bird. Entries are in the following form: Titrated amounty; 4 number. 1HUS,
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Table 2-3a. Organization of the presentation of the data, analysis,
and corresponding theory.

Elemental
Data Transformation Addivity Decrementing
Perceived Exp. Formal Exp. Formal Exp. Formal
Value Theory Theory Theory
X X X X X X
Effective X X X X X

Value

the entry 123, under substimulus 0001 means that bird 30 is indifferent be-
tween Vmg = 12 mg and substimulus 0001. Numbers in brackets are for birds
that died in the course of the study; three of the ten birds died during the study,
which took over three years to run. Some of the points were replicated by the
same bird.

Results of the Three Experiments

The analysis is presented in four parts: (1) elemental data for perceived value
and effective value of a substimulus; (2) transformations that make the value of
the molar level stimuli a linear function of the reinforcement density; (3) the de-
gree to which the aggregation of reinforcers within a substimulus is a linear func-
tion of the contribution provided by each reinforcer when the transformations
from (2) are applied; and (4) the decrementing functions that best account for
the decrease in value as a reinforcer occurs further from choice. (See Table 2-3a.)
The analysis will be presented first with the corresponding model following.

ELEMENTAL DATA
The Discrimination Situation

The most elemental form of the discrimination data examines the choices that
the pigeons make following a substimulus presentation. A left peck to a sub-
stimulus, L1S,,, is the decision that indicates that the substimulus is rich. The
probability of a left-key peck to the given substimulus is p (L1S,) = (L1S,)/
(L1S, + RI|S,,). This value is called bias in signal detection theory (Nevin, 1969;
Green and Swets, 1966), the model used here and in previous presentations of
similar data (see Commons, 1979; 1981). This represents the tendency to indi-
cate that the substimulus comes from the rich schedule. Although only single
left-key peck or right-key peck dichotomous choice can occur on each trial,
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p(L1S,) indicates the proportion of times the pigeon indicates that the sample
was from the rich schedule, or in the following sense, the perceived richness of
the sample.

It is assumed that probabilistic responding is a result of the combination of
signal and random noise in the perceptual and memory processes for reinforcers
in the schedule sample. For a substimulus whose perceived density is very high
when measured over a number of trials, the perceived density on a trial will be
high no matter whether the noise processes increase it or decrease it, unless the
noise is extremely large, and so the subject will almost always peck left (high
p(L1S,)). Similarly, for a substimulus whose perceived density is very low
when measured over a number of trials, the perceived density on a trial will be
low no matter what the sign of the noise terms, and so the subject will almost
always peck right (low p(LI1S,,)). When the substimulus has an intermediate
mean perceived density, it will sometimes be perceived as high density and some-
times low density, depending on the noise terms, and so p (L1S,,) will have an
intermediate value. Furthermore, p (L1S,) will be higher the higher the mean
perceived density, and hence p (L1S,,) can be used as an indicator of the relative
perceived density of different substimuli.

Decision Rules

The quantity p (L) versus some stimulus dimension, p (L|“S”) is a decision
rule. A decision rule states that the conditional probability of a particular choice
given that certain situations or parameters of situations have occurred. In the dis-
crimination studies it describes the control of choice by various parameters of a
substimulus, such as reinforcement amount and proximity of reinforcement
opportunity to choice.

Decision rules express a functional relation similar to the one between relative
response rate and relative reinforcement rate in concurrent schedule research.
They will be used to provide a framework in terms of which various versions of
maximization laws and matching laws may be examined. Whether maximizing
or matching best accounts for the decision rules shown here has implications for
which is a better account in general. The results here should apply to other cases
because the situation is just a parametric variation of concurrent schedules.

Nevin (1969) has pointed out that experiments similar to this one can be
characterized as multiple schedules, In this case the multiple schedule has two
components that are concurrent schedules of the following form: conc FR-1,
EXT and conc EXT, FR-1. The stimuli marking the presence of a particular
multiple component, rather than being a red or green illuminated key, are dif-
ferent density reinforcement schedules. Since the schedules are not perfectly
discriminable, the multiple schedule is to some extent a mixed schedule. This
situation is similar to illuminating two yellow lights, one signaling that a left-red
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is reinforced on FR-1, with the right-green key on extinction, and the other sig-
naling that the red and green keys have the schedules reversed on them. In either
case, the relative payoff probability (rate) for making a choice in the presence of
a given substimulus is known and presumably the birds’ choices are controlled
by this probability in a similar fashion to the way choice is controlled in the
more usual concurrent schedule studies. However, relative obtained reinforce-
ment rate for each choice is not the same as the probability of a choice being
correct,

Matching of obtained outcome is the same as maximizing of preprogrammed
or obtained reinforcement in a discrete choice situation. The more the animal
goes to the more highly paid-off side, the more reinforcement is picked up on
that side relative to the other. A maximizing account at the molar level would
predict that a decision rule that maximizes reinforcement for choice would be
the following: The optimizing ideal observer always pecks right for density 0 and
1 substimuli and always pecks left for density 3 and 4 substimuli. For density 2
substimuli, a maximizing account would make no prediction since reinforcement
for making either choice was essentially equal. For the 6-cycle case, the optimiz-
ing ideal observer would always peck right for densities 0, 1, and 2, always peck
left for densities 4, 5, 6, and follow any rule for density 3.

The Empirical Decision Rules at the Molar and Molecular Level: A Matching of
Programmed Reinforcement Account Works at the Molar and Fails at the Mole-
cular Level, Recall that substimuli may be described on the molar and mole-
cular levels. On the molar level only reinforcement density is considered and sub-
stimuli take on reinforcement density values from 0 to 4 (or from 0 t0 6).On a
molecular level, there are 16 substimuli, each indicating a particular reinforce-
ment pattern that may occur over the 4 cycles, or 64 substimuli, each indicating
a particular reinforcement pattern that may occur over the 6 cycles. The sub-
stimuli are described in binary notation. For example, substimuli from the
4-cycle case with a density value of 1 at the molar level can have molecular
values of 0001,0010, 0100, and 1000.

Figure 2-3 shows both the molecular and molar level data. The panels in the
left column of the figure show data for the 4-cycle discrimination experiment
(Experiment 1). The bottom three panels of the right column show data for the
6-cycle discrimination experiment (Experiment 2). The top right panel shows
4-cycle preference data. The discrimination data will be discussed first.

At the molecular level each panel (whether for the 4-cycle or the 6-cycle
data) shows one bird’s p(L ) for each substimulus density during the test sessions
on that condition. Each point indicates the probability of a left-key-peck given
a specific substimulus, p(L1S,,).

At the molar level the decision rules are indicated by the average left-peck
probability for substimuli at a given density p(L Ib;,\,-(f). I'hese points are the
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Figure 2-3. Left-key peck probability p (L) for the 4-cycle discrimination
data for each individual substimulus, arranged so that all same-reinforcement
density substimuli are grouped above that reinforcement density number,
Ny. The solid line shows the average p (L ) for each substimulus group, At the
top of the right column is a graph of the values of Vmg , the amount of food
in milligrams necessary to produce indifference between the standard and
comparison substimuli, plotted against number of reinforcers in a substimulus.
This plot, which is from the preference data, is similar to that seen for the dis-
crimination data. The bottom three panels in the right column show p(L)
values for each individual substimulus for the 6-cycle discrimination data.
Since there are 64 such substimuli, they are not identified individually here.
The average p (L ) for each substimulus group is shown by the solid line.

filled-in circles. The curve through these points is close to one where the proba-
bility of left is equal to the probability of programmed payoff for that choice.
The shape of the curves appears to be ogival.

The panels of this figure show clearly that choice probabilities at the mole-
cular level, reflecting the value of substimuli, do not generally fall close to the
programmed reinforcement matching curve, p(LISNd). This suggests that same
reinforcement density substimuli are not given equivalent value on a molecular
level, although they are equivalent on a molar level by definition. That is, at the
molecular level, substimuli with the same number of reinforcers in them act dif-
ferently in determining the left-key-peck probability within the discrimination
procedure.

A Simple Maximizing Account and Matching of Obtained Reinforcement Do
Not Account for Empirical Decision Rules at the Molar and Molecular Level,
Neither molar nor molecular maximizing of payoff or matching of obtained pay-
off are supported by the discrimination data in Figure 2-3. Remember that the
assigned values for substimuli should be the minimum for substimuli with densi-
ties below the mean (0 and 1 in the 4-cycle case and 0, 1, and 2 in the 6-cycle
case and should be maximum for values above the mean (3 and 4 in the 4-cycle
case and 4, 5, and 6 in the 6-cycle case). In none of the panels of Figure 2-4
is this maximization nor the equivalent obtained payoff matching indicated.
Neither the average nor the individual values for substimuli (for densities other
than 2) fall on the discontinuous maximizing function, p(LISy =0o0rl)=0,
p(LISNd) = 2 = any value, and ),':J{JLISA:]f = 3 or 4) = 1. With respect to match-
ing to obtained payoff, there is strong undermatching. This would be consistent
with the data of Chung and Herrnstein (1967) since reinforcers do not immedi-
ately follow the end of the first link. They found that different delays produce
different values. A matching of obtained reinforcement account is consistent
with the data but does not account for it,

T e ————
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ELEMENTAL DATA
The Preference Situation Obtaining the Titrated Value

In the preference case the value Vmg of a comparison sample is equal to the
amount of food needed to titrate the value of the substimulus 0¥},400 in which
the reinforcers are delivered the second cycle into the second link, Remember
that the value of OVmg00 is titrated when the relative rate Rel B; is approxi-
mately 0.5, showing near indifference between the standard OVmEOO sample
and the comparison. However, the amount of food that produced exactly
Rel B; = 0.5 was not possible to find through an adjustment procedure. To ob-
tain a more precise value in milligrams ¥, that would produce indifference, a
regression equation was used to interpolate. Along the way to finding the titra-
tion amount, relative rates Rel BLk were found for different amounts in the stan-

dard, Vmgk

was reinforcement amount Vg, » and the dependent variable was the relative

, on a session k. The independent variable in the regression equation

rate Rel B; . The number of milligrams necessary to produce exactly a 0.5 rela-
tive rate for both the comparison substimulus and the standard substimulus was
then found. These values were very close to the values that produced near 0.5
relative rates,

Data analyzed in the preference situation included each Vg at each point for
each bird, as shown on the left of Table 2-3. There were 33 cases. All the points
except 0000, 0101, 1010, and 1101 were run at least once. The point 0000 pro-
duces a value of ¥, = 0 but cannot be run because all the reinforcer amounts
in the second link would be zero.

Another way to think about the data is to keep in mind that bias, or p (L),
and V,,, both reflect value. One can thereby see that a somewhat similar set of
results should be found for Vmg ]SNd with the preference procedure substimulus
SNd' that have the same number of reinforcers as for p(LlSNd), which is reflec-
tive of perceived value,

One Aspect of a Generalized Programmed Reinforcement Matching Account for
the Preference Data Fails at Both the Molar and the Molecular Level, The value
Vmg did not linearly increase with N; (density) but was more of a power func-
tion, as shown in the top right panel of Figure 2-4. Recall that the average value
for same density substimuli (molar measure) was ogival within the discrimination
procedure. A suitable transformation would make each of these linear. Again, in
the preference case the ¥, value of each comparison substimulus with the same
number of reinforcers but different pattern V., ISy (molecular level) deviated

from the mean effective value for that group VmngNd (molar). The order of
deviations in value looks similar to that found in the discrimination procedure,
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In order to evaluate matching in the preference case, we must use what is
called the generalized matching account for obtained reinforcement (Baum and
Rachlin, 1969). There is no equivalent way to test matching of programmed re-
inforcement in the preference experiment to that discussed for the discrimina-
tion case since relative rate was always set at 0.5. The preference procedure
results do not support one aspect of the generalized matching of obtained rein-
forcement law of Baum and Rachlin (1969) if it is extrapolated to programmed
reinforcement. Aggregate molar theories that average the effects of reinforce-
ment across patterns of reinforcement and only worry about the total values
V't have suggested that total value is equal to the amount of reinforcement de-
livered on a given instance a, times frequency of reinforcement r (Baum and
Rachlin, 1969), so that V' = a . r. However, the upward curvature shows that
increasing amounts of reinforcement in the standard are necessary to balance
increases of frequency of reinforcement in the comparison. As shown in the top
right of Figure 2-3, it took more than twice as much reinforcement to balance
twice as frequent reinforcement as shown by comparing the V. for density 4
and for density 2 substimuli. The molar values are indicated by closed circles and
conform to a power function, which is inconsistent with the linear system re-
quired by the generalized matching law account.

At the molecular level, a generalized matching law account fails because in
addition to what was just stated, the position of the reinforcer, with respect to
the decision that evaluates value, matters. This, of course, would be expected
(see Rachlin and Green, 1972).

Generalized Maximizing Fails to Account for Preference Data at the Molar and
Molecular Level. Since value again is treated as the product of amount and fre-
quency (Rachlin, Battalio, Kagel, and Green, 1981), a maximizing account will
fail on the same grounds as just previously stated for the generalized matching of
obtained reinforcement account. Neither of these findings is terribly surprising
because, as Rachlin himself points out, increasing reinforcement might have mar-
ginal decreasing values.

ANALYSIS OF RESULTS
Plan of the Analysis

Since previous accounts do not account for either the molar or the molecular
data by definitively showing either matching or maximizing, a different approach
to explaining the data is taken here. Also accounts of undermatching of response
probability to obtained payoff used unmeasured parameters. The samples are
clearly being evaluated in a way different than suggested by these models. Next,
models that might better approximate this evaluation process by using molecular
level information in the substimuli will be examined.
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For the 4-cycle discrimination procedure, Commons (1981) showed that
there was a transform that would yield a measure of perceived value that equaled
the sum of the contributions of each reinforcer occurring in the substimulus,
[his means that in a reinforcement schedule sample the value of the sample is
the sum of the contributions of each reinforcer. However, a number of trans-
forms were not tried in this previous work. The contribution of each reinforcer
decreases the further away it occurs from the choice used to determine value,
Only one decrementing function was tried; this left a number of questions to be
answered about the way reinforcers are aggregated.

There are a number of steps in describing the processes by which reinforcing
events in reinforcement schedule samples are aggregated. A description of part of
the processes of how a series of reinforcers are valued, when they are to be per-
ceived as stimuli, and when they are to be preferred as reinforcers, has four
parts. The first step is to see what transformation makes additive the effect of
each reinforcer on perceived value. Second, data on how the impact of reinforc-
ers decreased as a function of how many cycles of possible reinforcement inter-
vened between it and a choice that was used to measure value, are presented.
Models for weighting the contribution of each reinforcer in a schedule substimu-
lus is found. Fourth, for the preference data, the decrementing function that
accounts for the decrease in the contribution of each reinforcer the further it
occurs from choice is found. In general, all the models suggest that the value of
samples are approximately additive after being appropriately transformed and
weighted. The differences between the models, for both the discrimination and
the preference case, are the transformation and weighting schemes proposed.
After these steps have been completed for both procedures, values of substimuli
obtained with the discrimination procedure are directly compared to values ob-
tained with the preference procedure.

A Single Model Predicting Both Molar
and Molecular Values

Since the average of same density substimuli was not linear in either the discrim-
ination or the preference data, transformations that would make them linear
would give information about the aggregate or molar functions. However, if the
averages that appear ogival in the discrimination case and as a power function in
the preference case can be explained by predicting each disaggregated, individual
substimulus value, a much stronger explanation of how decisions are made will
be at hand. As was shown in Commons (1981) additivity of the contributions of
each reinforcer at the molecular level ensures that the most linear form of the
molar relations will be obtained; that is, the relation between the average of val-
ues of substimuli with the same number of reinforcers and that number is linear.
This also explains matching of programmed reinforcement probability at the
molar level.
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Transformations That Allow Additivity

Additivity is best shown by seeing how variance can be accounted for by a multi-
variate linear regression with the contribution of each reinforcer being repre-
sented by the coefficient for that position. Let the predicted value V'* equal the
sum of each coefficient g; times v;, which indicates whether a reinforcer is pres-
ent or not. A star after a I/ means that this represents a predicted value. The pre-
dicted value of a substimulus will be called V* 2 whether this value is derived

from the preference case or the discrimination case. The S, refers to the per-
ceived or obtained value of a substimulus number. The transformed value allow-
ing additivity will be referred to as perceived value (discrimination case) and as
effective value (preference case). If VS" is scaled simply as p(L), it is highly non-

linear. In the preference case, if Vy,, |S,, is simply scaled as Vy,,, it is also non-

linear. The first thing is to see how transformation of V5 increases the amount
n

accounted for by a linear multiple regression. Again, this can be done for both

the perceived value and the effective value.

Discrimination Experiments

- Transformation Needed to Get Perceived Value, Recall that bias p(L) is ex-
~ pected to be a monotonic function of perceived value. We find that as the num-
~ ber of reinforcers in the substimulus increases, p(L) does not linearly increase. A
- good measure of perceived value for molar stimuli should linearly increase as the
~ density (number of reinforcers in a substimulus) increases. Perceived value VS
~ should be the sum of the contribution of each reinforcer, as was previously dls-
~ cussed:

a v;
it
1

PI'M;:

Vsn = T(p(L)) = ap +

1

~ The letter 7 stands for the transformation that makes the multiple regression the
- most linear. The q; are the weights applied to v;, where v; = 1 is when a rein-
1) r"fbrcer did and v; = 0 is when a reinforcer did not occur on the ith cycle away
~ from choice. From the shape of the curve relating p(L ) to density Ny in Figure
- 2-4 the transformations that might work are the probit (inverse probit trans-
- formation), the logit, and the arcsine, which is written sin”'. The probit trans-
- formation maps cumulative probabilities, the area under the normal curve p(L)
- from — 0 to z, into their respective z scores. This transformation is just the oppo-
~ site of one in which the z score is converted into a cumulative probability, as in
- 4z test. The logit transformation is

p{l) p(lL)

logit (p(L)) = log —(; = log -_(;Q)
# P
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and the sin' (p (L)) is the value whose sine is p(L). All these transformations
yield values of p(L|S,,) ranging from approximately —2.5 to 2.5. A scale trans-
lation constant ao, which is estimated in the multiple regression, is also included
in the transformation, to get the values to go down to a negative value. This is
done because the sum a; v; is always positive with a reinforcement instance arbi-
trarily assigned a value of 1 and an instance of nonreinforcement arbitrarily
assigned a value of 0,

These three transformations of p(L) were tested to see which produced the
best-fit regression line to the points produced by the discrimination procedure
shown in Figure 2-3. The results are summarized in Table 2-4. The probit trans-
formation did the best, as indicated by an r? = 0.8175, with the logit very close
behind with an #* = 0.8097. The sin”' transformation did significantly worse,
with r? = 0.2707.

The sum of @; v; was assumed to have an exponent equal to 1 after p(L) was
transformed. This, along with the specific function describing the decrease in
weights @;, the further a reinforcer occurs from choice, are discussed in the next
section,

The Madels for the Decremental Contributions of Reinforcers to Perceived
Value as They Recede from Choice. Four models for weighting the values of
reinforcers in the sample substimuli were tested. The four models tested for the
4- and the 6-cycle discrimination were: the multivariate linear, the exponential,
the hyperbolic, and the linear, Each of the latter models may be considered a
special case of the multivariate linear:

T(p(L)) = (ap + ajvy)"

1

"‘M-h

1

The sum was raised to some power n to see how close it would come out to 1
and to see if there was a multiplicative effect between terms, The value of a
schedule sample V is equal to the sum of the effects of a reinforcer on each
cycle, all raised to some power,

Table 2-4. Three transformations of p (L) fit to the multivariant model
of the contribution of each reinforcer to the aggregate perceived value.

Discrimination
Cyeles Form Transformation 2 df MSRes F
6  Multivariate £a,v,  Probit, z7' (p(L)) 8175 186 213 1389
p oA
Logit,log —2 =) 8097 186 234 1319
1 =p(L)

Sint (p(L)) 2707 186 336 11.5




REINFORCEMENT-DENSITY DISCRIMINATION AND PREFERENCE 51

The multivariate model estimates each weight a; as a separate parameter. The
other models each involve only two free parameters (in addition to @y and n).
Muth (1960) in forecasting theory and Wickelgren (1974) have argued for ex-
ponentially weighted models, while Mazur (1981) has suggested a hyperbolic
weighting. No one supports the fourth kind of model, the linear model, but
since it is another simple two parameter family, it was included for purposes of
- comparison. The hyperbolic hypothesis has the most support in the operant
- literature.

As Mazur points out in the next chapter of this volume, a shift from prefer-
- ring one immediate small reinforcer over a slightly larger but slightly delayed
one, to preferring the reverse after an initial delay is added to both, could not
occur with exponentially decreasing value. This shift means the curve for the
~ smaller reinforcer is above the larger for short common initial delays. With
~ longer common initial delays, the curves then cross. With an exponential decay
" function, the heights of the curves always have the same ratio one to another

y standard deviation of 0.82. These are not significantly different from 1.0, satis-
fying the use of that exponent elsewhere for discrimination data. The residual
- squared errors for the exponential and hyperbolic models are not very different
from that found for the multivariate, showing that they well represent the
- weighting functions, the exponential doing slightly better in the 4-cycle case and
~ the hyperbolic doing much better in the 6-cycle case. The linear models do not
1@0 as well; however, the differences among all the models are not significant
in the range that had data. The last three models require four parameters to be
~ estimated.

Figure 2-4 shows the degree to which the various models fit the points pre-
~ dicted by the multivariate regression. This simply is a way of illustrating graphi-
.~ cally the data statistically examined in Table 2-5. Two ways that the models
4 could be visually compared within an experiment as well as across experiments
are either to compare the weights generated by the various models or to compare
- how well they predict substimuli that have only a single reinforcer, as that rein-
forcer moves further and further from choice. The latter method was used be-
Cause it included the effects of the power to which the sums were raised as well
45 gg, the minimum value in the discrimination cases. Instead of using actual
-iflﬂta points, which would not reflect the entire data set, from which it would be
ard to visualize the weighting functions, values for substimuli generated by the
tivariate fit were used. Since each reinforcer occurred only once in any of
Se substimuli, the degree to which a model predicts the value of a multivari-

substimulus reflects how well it estimates each independent weight for the
contribution of a reinforcer on a cycle.
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Table 2-5. Models for the discrimination study and the preference study.
The second column gives the model’s name and the third column shows the
right hand side of the equations. The coefficients for these models are listed
in order (Columns ay - a4) with standard deviations beneath. Column 7 lists
the exponent calculated for each model and standard deviation. Column RS
lists the residual sum of squares. The rightmost Columns df, MS, and number

Diserimination

Cyeles Form Equation ap a; as
4 Multivariate a, + {Eaivl.}" -2.542 1.776 1.279
S.D. 27 41 .30
Exponential a,+(za vr.e'a: Gyn -2.544 2.502 .3397
S.D. 27 62 058
Hyperbolic ay+ (Eal vt-f{az + L‘l-))ﬂ -2.550 3.547 9743
5. Ix 27 1.00 A7
Linear a,+ (z vila +a, cf)]" -2.548 2.090 -.3751
S.D. .27 48 10
6 Multivariate a, + (l‘.al. 1!‘.}" -2.599 1.696 1.339
S D .20 36 .29
Exponential a, +(Za, lr[.f"azc:‘)" -2.598 2.138 .2423
S.D. 20 46 024
Hyperbolic a, +(Za vl +a, 3% -2.536 3.122 3783
S.D. .19 31 .22
Linear a,+ (Zv;(ﬁ] + azcl-])" -2.599 1.757 -.2192
S.D. .21 37 .050
Preference
Cycles Form Equation agp ay az

Combined Preference

4 Multivariate (2q;v;)" — 7.290 7.394
S.D. _— 2.60 2.08
Exponential (Za, vl.e’“z Hyn — 11.505 L2087
S.D. — 5.00 .096
Hyperbolic (Xa, vif(cl- + a, L == 33.300 2.407
S.D. — 16.25 2.04
Refeed (a, Ta;v; )& s T3 s
S.D. — 2.44 —
Linear (Ly (e, +a, c,-))" — 9992 -1.281

S.D. e 3.80 Jq9
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Table 2-5. continued

of parameters estimated. These values are the results of nonlinear regression
where the independent variable predicted is the p(L) of a substimulus in the
preference case and the effective Value V;,, of the discrimination variables.
The other independent variable is whether or not a reinforcer occurred on a

given cycle.
Number of
Parameters
a3 aq as as n RS df MS Estimated
.B518 6763 — — 1.081 22312 58 385 6
.22 .20 - - .14
—— — — — 1.079 22392 60 .373 -+
— — _— == 14
—_ — —_ — 1.081 22.541 60 .376 B
il - — e 14
_ —_— —_ — 1.077 22.893 60 .382 4
= == = == 14
.9000 7261 7393 .5442 8490 36.387 184 198 8
.19 A7 Pl i) .14 .082
—_— — — = 8448 37.371 188 .199 4
—_— —_ —_— — .081
—— — — - 8578 37.061 188 .197 4
- = — —= 081
—_— —_- — — 8493 39.110 188 .208 4
— — — - .083
Number of
Parameters
as ag as ag n RS df MS Estimated
2.395 5.945 — — 1.561 6976.8 28 249.2 5
141 1.80 —_— — 15
— — — —- 1.453 83246 30 2775 3
— — — — - A5
— — —_ —- 1.443 8295.7 30 276.5 3
- — - — 15
— = — — 1.382 8510.2 31 2745 2
— — - — 14
— — — — 1.468 8401.1 30 2800 3




54 FINE STRUCTURE IN INSTRUMENTAL RESPONDING

Figure 2-4, The extent to
which the curves generated
from the forgetting models fit
values of substimuli derived
from the multivariate regres-
sion estimates is shown. The
curves represent the three for-
getting models, hyperbolic,
exponential, and linear. The
points represent the predicted
substimulus values. Substim-
uli are arranged so the one
reinforcer in them recedes
further from choice as one
goes further to the right, The
top two panels show per-
ceived values for substimuli
found from 4- and 6-cycle
discrimination studies; the
bottom panel shows effective
values for substimuli found
from the 4-cycle preference
study.
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: A number of things are clear from an examination of this figure. First, the
1 curves are always in the same order outside the region where the fitted points lie.
" The hyperbolic is the most curved and falls above the other curves, the exponen-
tml is next, and finally the linear lies below. Within the range of N; values of the
4 set of substimuli being predicted, the order is reversed. Second, the hyperbolic
- curve misses the first point in the 6-cycle case but was closer to the other points
ﬂmn the other curves. This suggests that with more points the hyperbolic may be
~ even more favored. Third, the fits would seem to be better differentiated if there
~ were more cycles. Mandell (1981) has pigeons discriminate longer schedule sam-
oles successfully, but because she used no samples of shorter length, her data
yuld not be analyzed as was done here. The curves suggest that the different
‘models diverge most clearly in their predictions for the value of reinforcers very
: se to choice. But in order to program reinforcers closer to choice, cycle length

‘would have to be shortened. There are problems in doing that. When the cycle
was shortened to 2 seconds (Commons, 1981), there was a loss of discrim-
ity because the cycles were occurring so close together that the birds
ssed picking up reinforcers.

Preference Experiment (Effective Value)

sformation Needed to Get Effective Value, Recall that Vmg is expected to
a monotonic function of effective value. We find that as the number of rein-
rcers in the substimulus increases, Vmg did not linearly increase (as was shown
1 the top right panel of Figure 2-3). Effective value T'( Vmg) should be a trans-
ation of Vmg that is equal to the sum of the contribution of each reinforcer,
we follow a process that is parallel to that used for perceived value. Recall that
ditivity is best shown by a multivariate linear regression where the predicted
able is the transformation of V;,,,

Vi

4
T(Vyg) = Vilr = I
“a power function was tried here. The value for 1/n found in the multivari-
regression was 0.7. Its inverse was 1.41 with a standard deviation of 0.14,
ich was significantly different from 1 (p < 0.01). This result is reported in
bottom of Table 2-5. That exponent 1/n explains the curvature seen in the
Op right panel of Figure 2-3, which was described in the section on the elemen-
| preference data.

The transformation 7 is interpreted as indicating that the effective value of a
forcer is not proportional to the amount of food received but, rather, is
d to that amount via a concave utility function U(x) = x1/7_If the effec-
Ve value of a food pellet of size x (in mg) is x1/7  and the effective value, £V,
1 @ sequence of reinforcers is a weighted sum of their individual effective values
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4
E ai(xf}”n N
i=1

then the effective value of a substimulus (v, v,, v3, v4) will be
4

EV = % a;(v;+20mg)'/"
i=1

4
=omg!m T 4y ,

i=1
whereas the effective value of the comparison schedule (0 Vg 00) will be
EV = 04a; (V)" 4040
g (™

The value ¥;,,, at which indifference will be observed must be when

4
(20 mg)l/" Z g

i (Vmg)m i=1

So that 4 "
X u v

g 11
v 20 m =l
mg & 2,

This is the regression equation, to be estimated next.

THE PREFERENCE DATA

The Models for the Decremental Contributions
of Reinforcers to Effective Value

The models tested were the same as those in the perceived value case: multivari-
ate, hyperbolic, exponential, and linear. (Note, however, one important differ-
ence: The value of n should be different from 1 in these regressions, because
T( Vmg) - Vmg”” is the transformation needed to get effective value, whereas
n should equal 1 in the discrimination regressions, because the correct nonlinear
transformation z,,(y, has already been applied to the left side variable. An expo-
nent greater than 1 has an interpretation in terms of a concave utility function
for consumption of grain pellets in the case of the preference data, whereas it
would have no such interpretation in the case of the discrimination data.) The

T R _ T, e AT
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outcomes are shown in the bottom part of Table 2-5. The plots of the models
for the derived points are shown in Figure 2-4, The derived points were found
in the manner described for the discrimination data. Both the table and the fig-
ure show that the multivariate model accounts for the most variance in the data,
the residual being the smallest. (This is necessarily so, as it is a more general
model than the other three.) The hyperbolic accounts for the next most vari-
ance, doing slightly better than the exponential, with the linear doing quite a bit
worse. Still the mean square errors were not different enough to produce signifi-
cant F statistics between models. Table 2-5 lists one extra model tested for this
procedure; it will be discussed in the next section.

The “forgetting™ curves in Figure 2-4 were in the same order, and with
similar spacing to the ones seen for the discrimination data. The variability of
the preference data was much greater since the number of cases was smaller, so
deviations might not be as meaningful,

Perceived Value and Effective Value of a Substimulus Are a Linear Function of
One Another: The Aggregation Process Must be Isomorphic. If control by rein-
forcers decreases as they recede from choice in the same manner in both the per-
ceived value and effective value cases, then the function ¢; = f(c;) should be the
same in both cases. Not only the functional form—hyperbolic, exponential, or
linear —should be the same, but the coefficients should be related.

The next-to-last model in Table 2-5 for the preference case used the values
of ¢; found in the 4-cycle discriminative multivariate model as estimates of the
coefficients in the preference multivariate case. This procedure did quite well in
accounting for variance and used only two parameters. The residual sum of
squares was still less than that found for the linear model though more than the
hyperbolic and exponential models. However, the mean square error (MS) was
the smallest because the number of parameters estimated was only two. This
shows that the coefficients from the discrimination case adequately account for
the decremental weighting in the preference case.

This concludes the first way of showing that the perceived value of a sample
from a schedule is directly related to the effective value of that same sample.

The second way of showing this is to plot directly the relation between the
Vmg obtained in the preference experiment for a schedule sample and its per-
ceived value Zp(L) from the discrimination experiment. This is shown in Figure
2-5. The regression equation relating V“.lg to zj, (1) should yield a comparable
exponent of 0.7 to the previous regression since ZpLy sa linear function of
perceived value, as shown previously. Analytically this method of comparison is
the same as the previous method but it is more traditional within psychology.
The means of the values across birds for both the discrimination procedure and
for the preference procedure at each of the 12 points were used in this second
TEgression.
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Figure 2-5. Titrated effective value Vi, is plotted against the perceived
value Z,(;). The numbers refer to the substimulus numbers for either case.
The lines indicate one standard deviation, Absence of a line in the vertical

director means there is only one bird.
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Transformed effective value = Linearly transformed perceived value

4
vl 3 )" =gy +
g i=1 ' i

Logging both sides and performing the linear regression, the values obtained are

LN S

a

1 1"!: = Cp +(.'I Zp (L)

]

0.83 _
Ve = 10,62,y +769

or in a slightly different form:
— 1.2
Ving = (10.6 25 (1) + 26.9)

The correlation r = 0.9632 between mean effective value ( V‘?T?g) and mean per-
ceived value Zp(L) for each substimulus was reasonable,

Signal Detection Analysis of Molecular Matching and Maximizing: Is Molar
Matching a Consequence of Molecular Processes Given Forgetting? The results
of the discrimination experiment described in Commons (1979 and 1981) are
presented as evidence of matching to relative expected payoff (programmed rein-
forcement) at the molar level. The relative EP(L ISNd) is the ratio of the ex-

pected payoff for a left-key-peck, EP(L ISN ), to the sum of the expected pay-
off for both key pecks:

EP(LJSNd}

Rel EP(LISy,) =
eLRRL ) EP(LTSy ) +EP(RISy,)

The expected payoff for a left-key peck in a given stimulus condition, £P(L ISNd),

may be interpreted as the product of the conditional probability of reinforce-
ment for a left-key peck in the given stimulus condition, p(LClSN ) and its
reinforcement utility Uy :

EP(L|SNd'J = p{LClSNd} - U

EP(RISN‘}) = p(RC|SNd} - U

]

[1 —p(‘LClSNd)] « Ug

(We will allow for the possibility that the utility of reinforcement is not a linear
function of the amount of food received.) Relative expected payoff retains the
common notion of programmed relative amount of reinforcement (Catania,
1963). According to the matching law ( Estes, 1957; Commons, 1979), the prob-
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ability of pecking left for a substimulus of density N; should be

EP(L |S\JI

L18y ) = Rel EP(LISy.) =
pL Ny sl ZP( Ny EP(L1§~3)+EP(R|SNE)

Now, for the 4-cycle 7' schedule used in Experiment 1, using Bayes’ law:
EP(LFSNd) = p(LClSNd) o U

p(Sy, 1 LC)

= - ‘ir
P(Sy, 1LC)+ p(8y, IRC) U

Vg 44N

Likewise,

]

'E‘D(RISWH} P[RCF-S:.V‘!) . UR

[}(SAaJLC)+ p{SNd!RC)

Ur

N 4 34N
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i

f Hence, the matching law for programmed reinforcers would predict that

1]

P(LISy,) = Rel EP(LISy,)

3Na
3Nd Y 3(4 _Nd)
Ny 3(4-Ng)

ST P .
3Nd+3(4—Nd) 3Nd+3{4—Nd)

Ng

3ra- U

Ny . (4-Ny)
3% U +3 - Uy

term U is the utility value of the reinforcer received for a correct left-key
peck, and Uy is the utility value of the reinforcer received for a correct right-key
. The following discussion uses p (L) instead ofp(LlSNd). The prediction
‘matching of expected payoff (also referred to as programmed reinforcement)
be simplified using a logistic transformation:

N
! d .
Py _pw) _ 1Y
Y=p(L.) P(R) 3f4‘Na‘). U
R
ogM—-= N;log3+log U, —(4—N;)log3—log U/
T Lo g U i) log e Uy
UL
=log—— +(2N;—4)log3 . (2.1)
UR

_ﬁ!_ience molar matching predicts that the logistic transformation of p (/L) should
Pe a linear function of the density N,

B Figure 2-3 showed that if the average p(L ) value for all substimuli of a given
density is plotted against NV, the plot is of approximately the right shape. This
suggests that the logistic transform of p(L ) is approximately a linear function of
~ density of a sample at the molar level.

~ Unfortunately this theory does not have a systematic account of the great
.flifferences observed in the values of p(L) for different substimuli of the same
density. If the birds were really matching to relative expected payoff, given the
“information available to them, only the density of a given substimulus should
dmatter. Instead, for substimuli of a given density, the birds are observed to peck
~ left more frequently when the reinforcers occur later in the substimulus. In fact,
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we have shown above that molecular level data for the zero-bias experiment

r 1 Iy s lads VY 1 S
(U = Ug)are well accounted for by a relation of the form

ZPlL] = dp +.2 @ (2.2)

where v; = 1 for a substimulus with a reinforcer in cycle ¢;, v; = 0 for a substim-
ulus with no reinforcer in that cycle, and the @; are a decreasing sequence of pos-
itive weights given in Table 2-5. This account of the molecular level data implies
that suitably transformed molar data should yield a linear plot, specifically:

1’\'d_2

4
2* sl 3o 5
p(LiSNd1 4 iy (2.3)

where z;('LISNdJ represents the mean of the z, ;) values for all substimuli of a
given density. (For derivation see Commons, 1981: 78-80.) The z value of p(L)
is found from the inverse probability of p(L), also known as the probit trans-
formation. Since this probit transformation of the data is not too different from
the logit transformation used in Eq (2.1) for the range of values in question, a
theory capable of predicting Equation (2.2) would also explain the general char-
acteristic of the molar data that was interpreted as evidence of matching of ex-
pected value at the molar level.

Such a theory can in fact be constructed, on principles strictly compatible
with utility maximization, The difference between this theory and the simple
maximizing accounts rejected in Commons (1979) is that we assume that at the
time of choice the bird can only remember the substimuli with error, the error
being greater in the case of reinforcers more distant in time. ( This was a maximi-
zation model suggested at the time but not developed.) The formal theory of
utility maximizing choice under such conditions is well known as signal detec-
tion theory (Green and Swets, 1966; Egan, 1975). Since psychophysics experi-
ments generally involve single stimuli, rather than sequences of stimuli of the
sort we use, a full derivation of the implications of signal detection theory for an
experiment of this sort is presented next.

Let y; be the amount of reinforcement in a cycle ¢;, as remembered by the
bird at the time of choice. Assume that y; is a normally distributed random vari-
able with variance o7 and mean y; in the case that v; = 1, and mean —u; and vari-
ance o} in the case that v; = 0. Assuming the two means to be additive inverses
involves no loss of generality; only the ratio d" = 2y, /g; (to use the standard
psychophysical index of discriminability of the reinforcer on cycle ¢;) turns out
to have observable significance. Four times the squared inverse of d’, which is
6; = of f,u} =4/(d")?*, will be used instead of d' because it simplifies certain
formulas. Then the distribution of y; ,in the case of the rich schedule, Sg : v; = 1
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with probability 3/4, v; = 0 with probability 1/4, will have probability density
function (PDF ):

—(yl-—,ul-)’ "'()",'"'Pf):

! . e 20':- + !

- e - 1 ¢ 20}
4 2ng; 4 Vam o

f() =

In the case of the lean schedule, S; :v; = 1 with probability 1/4, v; = 0 with
probability 3/4, it will have density function:

=p=m) —(y+ e’
1 1 2 3 1 1
f(y.):_——-e 20, e e Wi @ 20;
Y4 2m g : 4 V27 o l

If a bird chooses left or right so as to maximize the expected payoff, given
the particular remembered values y,, v,, V3, V4, of the sequence of events v,
Vs, V3, V4 in the schedule sample, it will employ a likelihood ratio criterion. That
is, it will peck left only when the ratio

EP(L\yy, y2, 73, ¥a)

: > 1
EP(RIyy, y2, 73, 74)

Now,

EP(Llyy, 2,73, 74) Yy P(¥1,¥2,¥3 YalSg) 4 I; 1 (y;1Sg)

EP(Rlyy, y2, 73, 74) Up p(¥1,72, 73, ¥alS) U I; £(318)

i —(y—up’ —(yp+u)
H é e 20% + e '20';

1
_ U oi=1 \a 4
Ur 4 - (= mp)’? O+ m)’
m\le 207 43, 207
i=1 4 4
Taking out the I1(1/4) from top and bottom yields
_{.VI-—H,'): “‘(Jv'f*'#,‘)z
B UL 4] e 20? + e 20?
Up i=1  —(y—u)? —(¥i+u)?

2 2
» 2 9
' 20; +3e 20;
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and then expanding, yields

_(}'§ — 2y Myt g;) = [J':- + 2yt ”:‘
s i 1'-1[ 3e 20} + e 20;
Ug i=1 —(j—2yjm+ ) (i 2yt )
e 20 + 3e 20}
— (¥} + )
Then the term, e~ 29} may be factored out and cancelled top and bottom:
(77; 4) — (i H;)
= H i 3e 19 te 0]
Ur i=1 @) - (@i #p)
e 30} +3e 34}
= (y,' K )

dividing top and bottom by e 9} yields

(2y; #;)

Uy 4 3e 9% +:]
Up i=1 Qi k)
Ite 0;

The bird will peck left when this quantity is greater than 1. This is a nonlinear
condition on the y; values. But in the case that discrimination of the remforcers
is difficult (that is, all the §; are relatively large), and therefore p; << a which
would appear to be the case in this experiment, the following approxmlatlons

may be used:

(2y; 1;) 2y By 3y, M}
1’2 i 31 + : i l“ i 531
Je 9 +1 g + o

(2y; .Ut-} 3401 + 2y By 5 2y oMy
3+e Uf o o;
2
3 Yi#y 3 Yi Hj
G 1 Tz 4
o; 2 o;
oK 3. 3
1 YiHi 1 Yi ki
1+ 2 - a W
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2.3 2.2
_ 1+§ Yi By +2)’f#“ ]—-l Vi g e ; Yi b
2 cr; 2 B; 2 o; 4 a;-'
Vi M yip} 2
~ 1+ — 41 ~ eYikilo
i - 2

Vi B
E‘ 4[ e al? > 1
UR i=1
Yi B
%  x 8
il U
Taking the log of both sides gives
4 yiu U
Z izl > ln—L-;—e
i=1 9; i3

The approximations are quite robust. Note that both linear and quadratic terms
in each of the four Taylor expansions are kept, so that the result is correct up to
terms of order (1;‘6")3 : when §; is very large, {1,1’6,-)3 is very small. Furthermore,
we only care about the validity of the approximation in the region where £EP(L)/
EP(R) =~ 1;that is, where

4
z (3 #)/0f = In(Ug/Up) ,
I=

which in the case of only moderate bias, will mean y; values such that none of
the (y; u;)/ 0} = v;/8 u; are very large.
We have found that the bird will peck left when

4
Vi B U
> — > In £
i=1 9 2

But the expression on the left, as a sum of normally distributed multivariate ran-
dom variables, is itself normally distributed, with mean

(zvt- =%

5

[}

n i
e

M =
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and variance

conditional on the occurrence of the substimulus described by the v;, since the
conditional distribution of y; is N (p; (2v; — 1), o} ). Therefore the probability
of its being greater than In (Ug /U ), given the occurrence of that substimulus
is given by

M—1n(Ug/UL)

p(Ly = B 2.9}
so that
4
2oLy = ,'E: avi+b (2.5)
where
2
a; = —4———,},} (2.6)
6;| 1
j=x by
and

4
In(Up /UR) — [ Z 1,@-]
ji=1

4
[ o uaf]
j=1

We thus obtain the linear form of Eq. (2.2) for the zero bias case (U; = Ug ).
In addition to predicting the linear form (2.2), the theory predicts that one
should find

Ya

Y2

4 4
2 a =2| 2% = —2aq
=1 ! =1 8 ¢
This relation is approximately satisfied by the values given in Table 2-4,
4
—2ap = 5,084 b2 aj = 4,583
j=1

The slight deviation probably indicates that the variances of the two normal dis-
tributions are not equal, as assumed previously, when »; = 1 and 0, respectively.
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The model can easily be generalized although the generalization will not be dis-
cussed here. We also obtain the result, verified by Commons (1979), that the
effect of bias should be a vertical shift of the plot of suitably transformed re-
sponse probability against density. ( This molar result, of course, is also a predic-
tion of the matching eq. (2.1).)

The Decrementing of Value: The Additive Noise Model
of Forgetting Functions

The 4; coefficients can now be interpreted as indicating the rate at which dis-
criminability of reinforcement declines with time. The value of §; (indistinguish-
ability) was defined as 4/(d")*. The set of §; implied by a given set of a; coeffi-
cients are easily reconstructed by inversion of Eq. (2.6):

et 2.7)

4
aj (E :‘1,,-
=1

For the data to be consistent with a model of maximizing with imperfect dis-
crimination, then, the linear relation of Eq. (2.2) must be observed, and the g;
obtained must be such that

ay >aq >as >aq > 0.

The values reported in Table 2-5 generally satisfy this condition, More precise
predictions as to the relation that should exist among the 4; depend upon a par-
ticular model of forgetting. It makes more sense to formulate a forgetting model
in terms of the &; rather than the g; since it is the §; that have a simple interpre-
tation in terms of discriminability.

The simplest model of forgetting would be to assume that the signal stays
constant while the amount of noise increases linearly with time. If it is assumed
that the perceived value Y at the time of reinforcement is a random variable Y,
(random because of imperfect discrimination of reinforcement even at that
time), and that with each cycle that passes thereafter there is added another ran-
dom noise component e (with the random noise terms independent of ¥, and
of each other, and all identically distributed), then the random variable ¥}, rep-
resenting remembered values of reinforcement after 7 cycles have passed (in the
case of the 4-cycle experiment), can be written as
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Therefore.
E(Y;) = E(Y,)
var (Y;) = var (Y, )+ i - var(e)
and
var ( ¥;) var (Y,) _ var (e)

.= == + B —
% ET TRy YU Ry

The discriminability measure §;, as a function of cycle number i, is therefore
predicted to be a linear function:

6; =8, +iv

I

Substituting this expression into (2.6) yields

¢ o |
. = 28
“i d+i (2:8)
where
- % (8 S i
= = + 7
C v !;l o0 Y
and
60
d = —
v

This is a hyperbolic forgetting function of the sort discussed previously and esti-
mated as line 3 of Table 2-4. As we have seen, the data are consistent with a
forgetting function of this form; the 6-cycle data in particular indicate a func-
tion of this form. It can be shown that Eq. (2.8) holds for the general N-cycle
case, so that the same hyperbolic function is observed regardless of the number
of eycles,

Furthermore, quite general predictions are generated regarding the relation
that should exist between the a; values found for experiments involving different
numbers of cycles, independent of the particular forgetting model used. If it is
assumed that the discriminability of a reinforcer occurring, say, 2 cycles before
choice should remain the same no matter how many cycles preceded it, then pre-
cise predictions are obtained regarding the 4; values that should be found for, say
a 6-cycle experiment, and those found for the 4-cycle experiment. It is not that
the last 4 ¢; should be exactly the same in both cases; rather, the a; should be
such that when inserted into Eq. (2.7), the last 4 &; obtained are exactly the
same in both cases.
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In particular this theory predicts that the linear plots of suitably transformed
response probability against density will have less steep a slope the greater the
number of cycles in the experiment. The molar matching Eq. (2.1) generalizes to

1 AL, | Uy + (2N;—=N)log 3 (2.1
og——— = log — + (2N;—N)log3 , :
T-p(L) U d

where N is the number of cycles. This implies that the plot should have the same
slope no matter what the number of cycles, as shown in the top left panel of
Figure 2-6. The linear plot predicted by the maximizing theory on the other
hand, generalizes to
2N;—N N
B, T b3

— !
z;(f-iSNd) = IN af 2 {23 }

§i=]

where Egs. (2-4)-(2-7) remain the same except that all summations should be
from 1 to N. From (2.6) we sce that the slope of (2.3") is

N b n N 1%
R =k |1 3 gt
[i=l "] N [N i=t] '

When another cycle is added to the experiment, a new term is added to the sum.
Since the §; for the new cycle must be larger than any of the others, the average
value

N

=

i
Wy 3

=k
b;

gz

1
N

decreases. Since this term in the numerator decreases and the AV in the denomi-
nator increases, the slope of (2.3") decreases, as shown in the top right panel of
Figure 2-6 for the 4- and 6-cycle cases. Hence the predictions of the maximiz-
ing theory and the matching theory can be distinguished even for molar data.
'I_'he molar data plots presented in Figure 2-3 support the maximizing theory,
since the 6-cycle plot has less steep a slope. Equation (2.1") also indicates that
the matching of expected payoff theory predicts that the degree of vertical shift
associated with a given bias condition should be independent of the number of
cycles. Equation (2.6) on the other hand, indicates that the maximizing of ex-
Pec‘ted payoff theory predicts that the degree of vertical shift associated with
4 glven bias condition should be similar the larger the number of cycles. This is
another difference at the level of molar data alone.

. In the case of the additive noise model (hyperbolic forgetting function), the
slope of (2.3 is

N i N 4
2 N % _ 2 R o
N(,-Z':l 8 ) Y (;‘EI B0 +i7) )
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Figure 2-6. Theoretical plots (fop right) of the value VSN (on the y axis)
that is the logit L
p(LISK,)
P(LISNd) = log mm- log p(LlSNd)fP(RISNd)

on the top left panel and probitp (L) = z,(, ISy )° There are two x axes; the
d

one on the top is for the number of reinforcers in a substimulus in the 4-cycle
experiment and the one on the bottom is for the 6-cycle experiment. The
middle panel is also a theoretical plot of p (L) versus either the z transform
of p (L) or the phi transform of p (L). Note that the slope in the center por-
tion is the same but that the knee at A is sharper than at B. Also the same is
true for the ceiling knee although this is not marked. In the theoretical plot
of p (L) versus the predicted transformed value, Z,(, ) (bottom left), if the
straight line is more descriptive, local maximizing is supported, whereas if the
curved line is more descriptive, local matching is supported. In two theoret-
ical plots of the mean of the residuals z,,(,) - Z,(,) versus Z, ;) (bottom
middle), the dashed line is for local matching and the x axis represents local
maximizing. The plot of the actual residuals against Z,(; ) is shown bottom
right.

This implies that given the slopes for any two values of N, the values of 64 and
v may be calculated, and from them predictions obtained for the slopes for all
other values of N. Thus it is possible to test the additive noise model at the level
of molar data alone, even though there is no obvious forgetting function at that
level.

The most interesting test of the additive noise model, of course, compares the
values for 8, and vy implied by molecular level data (for any given number of
cycles), with the values implied by comparative molar level data between experi-
ments with different numbers of cycles. The 6-cycle data, as analyzed, indicates
a value of d ~ 7.4 (where d is presented in equation (2.8)), which would imply
6o =~ 0.48, and hence that:

Y
slope (N = 6) 4 14 24 34 44 54 64 = 0.7,

~ -

slope (N=4) ~ 6

which is close to what is observed.
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Figure 2-6
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Predictions of Local Matching Contrasted with Predictions
of Local Maximizing

To the claim that a maximizing model with imperfect discriminability can ex-
plain both the molecular and the molar data better than does the molar match-
ing law it might be objected that such a matching model could also explain the
fact that different substimuli of the same density result in different probabilities
of pecking left. In reply it can be observed that the matching of expected payoff
hypothesis was introduced in Commons (1979) only because it was thought nec-
essary to explain the shape of the molar plots of p (L) against density; we have
now shown that imperfect discrimination is sufficient to explain that, and no
deviations from rationality need be assumed. Many other examples of apparent
matching might similarly be explained as due to imperfect discrimination. How-
ever, if the matching hypothesis is considered of sufficient theoretical interest to
justify contrasting it with the hypothesis of utility maximization even when
thre are no gross qualitative results found to be inconsistent with maximizing
behavior, then predictions of a matching model with imperfect discrimination
may be easily derived.

It would then be predicted that the bird’s probability of pecking left, given
its recollection of the substimulus would be given by

g M; Vi
p(L) N EP(Llyy, y2, ¥3, ¥a) B _{{E . Gt a;

_— L

1=p(L) ~ EP(Ryy, ¥, V3, ¥a) Up

using the same approximation as before. The total proportion of left pecks,
when the actually occurring substimulusis vy, v,, vs, v4,will therefore be

& Gl
V=
) . ]

[ =1 %

1

t4&

B 2 X5
~ y
p(L) = _ - e A az.
4 1% Ug
o X &t — + &
=1 UL

-0

4
This expression depends on the v; only through the sum ‘EI v; /6; and is a
4=

monotonically increasing function of that sum. Hence there will be some mono-
tonic transformation ¢ of p (L ) such that

Pp(L) =

]

a

1’!' 3 (2.9}
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Ethological Generalizations

The present situations bear on ethological interpretations of choice. Different
patches in the environment may have changing amounts of reinforcement. The
spatial distribution of reinforcers (prey) is converted into a temporal distribu-
tion of response-produced reintorcement (a reinforcement schedule) as the
organism forages, The amount of prey in a patch may vary systematically from
one patch to another by being richer or leaner so that the rate of obtaining rein-
forcement is either higher or lower. The prey density may also vary randomly
so that one subpatch might be leaner than the average of another patch but the
patch from which it comes may be richer overall. How does a forager in the non-
human case and a decisionmaker in the human case combine those reinforcers
within a subpatch (schedule sample)?

In the foraging situation the uneven distribution of prey may be decomposed
into nonsystematic variation (noise) and systematic changes in prey density
(signal) over an area that takes a period of time to obtain. Two sets of decisions
might be made. First, the organism, from examining the sample, may forecast
how dense the patch is. This is the discriminated or perceived value of the sam-
ple. This discriminative information can be used to control or shift behavior by
serving as a cue to shift or stay. Second, the organism’s decision to continue for-
aging may be reinforced with respect to the other experience yields. This is the
effective value of the sample from the patch.

Hence there are two sets of behavior. One set consists of the choice to stay or
to leave (shift) and may be controlled by the perceived value of the reinforce-
ment sample. The second set obtains the reinforcers and is under the direct con-
trol of the bundle of reinforcers obtained in the schedule sample. Both economic
(e.g. Pareto, 1906) and ethological (e.g., Krebs, Kacelnik, and Taylor, 1978; Lea,
Chapter 7; and Kamil, Peters and Lindstrom, Chapter 8); theories have generally
assumed that organisms maximize expected payoff in a choice situation. How-
ever, in psychology (e.g., Estes, 1957), interpretations of data on choice have
tended to support the notion that organisms match their choice probabilities to
the relative rate of the programmed outcome. At first glance these two sets of
theories seem to be incompatible. In the type of choice situation studied here,
however, momentary maximizing at the molecular level may result in overall
molar matching. The underlying processes that establish the utility of the sched-
ule sample may involve momentary maximizing when forgetting and imperfect
discriminability of the sample exist.

CONCLUSION

Since the aggregation functions in the discrimination case and the preference
case have been shown to be equivalent, a similar linear noise model should
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account for both. Models of the preference case and how local maximizing and
an additive noise model might work there are left for a later exposition for a
number of reasons,

First, it is necessary to have an analysis of acquisition data that reflects what
is going on as response strength on each preference key shifts, This will be dis-
cussed by Commons, Woodford, Ducheny, and Peck (forthcoming). Second, it
would be useful to have a better idea what the 4; weights look like for reinforc-
ers occurring further from choice. A discrimination experiment with 6 to 18 cy-
cles (Cabral, Woodford, and Commons, 1982) will allow for a more accurate
determination of which model of perceived value produces the correct weighting
scheme.

To determine better the correct weighting scheme in the preference situation,
a new procedure must be used. Since the data for each point in the preference
experiment (a concurrent chain titration schedule) take almost a year to collect,
obtaining a sufficient number of points using that procedure with twelve cycles
would be prohibitive. A new discrimination paradigm with the schedule samples
as a consequence for correctly discriminating two similar stimuli would more
rapidly establish the samples’ values. By using signal detection analysis those
values can be calculated from the bias the samples create.

It is likely that a similar principle to that of momentary maximizing of choice
payoff will be true for effective utility of a schedule sample. The macro, molar,
and molecular results forthe preference and discrimination experiments wer:
homologous. The process that creates perceived value and effective value of a
schedule sample should be very similar. If this is true, however, it would mean
that behavior in the preference experiment is largely determined by discrimina-
tive properties of the substimuli. Problems in the discriminability of substimuli
should manifest themselves most clearly in the rate at which behavior adjusts
when the substimulus is changed. Hence in the case of the preference experi-
ment, the best way to determine the type of noise process involved is by looking
at acquisition, which will be the subject of a future analysis. Presently, under-
matching of obtained payoff has been shown to be consequence of forgetting
and of imperfect sensitivity to schedule differences. The degree of undermatch-
ing is a function of the amount of forgetting and of imperfect sensitivity to
schedule differences. Local maximizing therefore will account for undermatch-
ing and obtained reinforcement that varies in degree from none to great. Ob-
tained reinforcement matching accounts for obtained reinforcement maximizing;
local maximizing and the additive noise processes should account for the tradi-
tional matching and maximizing of obtained payoff phenomena and predict
when these accounts will hold.

Since aggregate obtained matching and aggregate obtained maximizing ac-
€ounts predict the same local behavior in a concurrent VR VR situation. it
would be good to have an experimental situation in which obtained matching
and maximizing make different predictions. Local maximizing theory should be
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able to predict that, in a VR VI concurrent situation, matching to obtained rein-
forcement at the molar level is supported. The way to go about this is to modity
the discrimination procedure described previously in this chapter. Remember
that the stimuli to be discriminated overlap so that the concurrent FR-1, extinc-
tion programmed under any given stimulus condition appears as a rich VR versus
a very lean VR for making a left versus right choice, The discriminability, or the
lack thereof, of the stimuli indicating which side-key peck has the FR-1 pro-
gram on it, controls the degree to which that FR-1 schedule appears as a VR
schedule, With perfect discriminability one key would appear to have a FR-1
and the other key extinction, With no discriminability both keys would appear
to have equal VR schedules programmed on them.

In a proposed discrimination experiment with imperfectly discriminable
stimuli, each correct left choice is considered one behavioral unit. Left correct
choices would be reinforced on a VI schedule, The other behavioral unit, a right
correct choice, would be reinforced on a VR schedule that would yield approxi-
mately the same obtained rate of reinforcement as the left key. Suppose that
each trial is 18 seconds long, 12 seconds for the stimulus period and 6 seconds
for the choice period. The average of the VI intervals would be 72 seconds. The
first left correct after the interval period (which are multiples of 18 seconds
timed-out would be reinforced. The right corrects would be paid off on a VR
schedule. For instance, the fifth right correct would be reinforced. The maxi-
mum programmed probability of reinforcement per trial for making a left choice
on the VI would be 0.2, that is, the first left correct after four complete stimu-
lus periods. For the VR it would be 0.2 also. The difference between the two is
the VI does not require on the average four previous correct right choices, only
that they had been programmed, whereas the VR requires four previous correct
right choices. This would favor choosing the left VI key if the obtained rein-
forcement matching law described by Herrnstein (1970) is more correct than
obtained reinforcement maximizing. The undermatching predicted by our local
reinforcement maximization would produce undermatching, more indifference
between the two alternatives than even predicted by obtained reinforcement
matching. Obtained reinforcement maximization would favor almost exclusive
preference for the VR key since only one choice out of five on the average has
to go to the VI key to peck up at least half the reinforcers programmed and
saved on it. It is hoped that the complexities of the situation will not make it
impossible to extend the local programmed reinforcement maximizing model to
this case.
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