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Optimization

Abstract
A model accounting for steady-state behavior on a variety
of schedules of reinforcement, including interval and
ratio schedules, is proposed. Organisms are assumed to
behave in a manner which maximizes a variable referred to
as "value." In ‘addition to accounting for behavior on
single-key schedules, concurrent variable interval and
" variable ratio schedules are dealt with. 1In order to
evaluate predictions from the model, a family of
reinforcement schedules is devised which includes interval
and ratio schedules as special cases. A dynamic modgl
which leads to the steady-state model is also suggested.
Several experiments are reported, the results of which are

consisgent with the model.
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Introduction

Recently a number of authors (e.g., Jenkins, 1970;
Mackintosh, 1975) have questioned the value of
investigating behavior maintained by schedules of
reinforcement. They suggest, for example, that the
behavior maintained by schedules is too complex to be
susceptible to analysis at this time. On the other hand,
Herrnstein (1970) takes an optimistic view with regard to
both what has been acomplished and what can be acomplished
in terms ok behavior maintained by schedules of
reinforcement. The present work falls within the latter
domain, and by making a number of simplyfying assumptions
attempts to integrate various schedule phenomena under one
conceptual framework.

Rosen (1967) points out that, within a fairly constant
environment, natural selection can be expected to result
in organisms that are optimally suited to that |
environment. He states: "It is now possible to make the
fundamental hypothesis that biological structures, which
are optimal in the context of natural selection, are also
optimal in the sense that they minimize some cost
functional deriving from the engineering characteristics
of the situation. This most natural assumption has been

called the Principle of Optimal Design®" (p. 7). By a cost

functional is meant some scale along which all
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possibilities may be evaluated. Those animals lower on
the scale can achieve some end incurring less cost than
others that are higher.

Applied to behavior, this framework would suggest that
animals act in a way that optimizes certain behavioral
variables. For_example, Herrnstein (1970) states:
"Animals do not just repeat the first successful act; they
are likely to improve upon it until they find something
like the optimal performance. In Thorndike’s puzzle box,
in the maze, or in Skinner s operant conditioning chamber,
animals tend toward faster, easier, and more congenial
movements, unless the performances are virtually optimal
to begin ‘with" (p. 243). An attempt will be made here to
view behavior maintained by schedules of reinforcement as
exemplifying optimization principles. The basic point of
departure will be differences in behavior under interval
and ratio schedules. This is an old problem, relatively

speaking: Skinner deals with it in The Behavior of

Organisms (1938); the differences in behavior are large;
and a number of suggestions have been put forward to
account for the differences. After reviewing certain of
the data and theories, some principles of optimization

will be introduced and applied to this problem.
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Behavior on interval and ratio schedules

At extreme values, interval and ratio schedules are
identical: at very short intervals, all responses will be
reinforced, as they will with a ratio requirement of one.
Similarly, both an infinite time requirement and an
infinite ratio requirement correspond to extinction. At
intermediate values it is generally found that ratio
schedules maintain higher response rates than interval
schedules. Skinner (1938) ran an experiment that compared
interval and ratio schedules. Rats were put on FI §° for
one session, and then put on FR with number of responses
per reinforcement approximately the same as before. Alil
four rats showed an increase in response rate; for three
of them this took several sessions to develop. Skinner
pointed out that the rats must have exhibited variability
in their response rates, and, furthermore, must have
detected the correlation between their rate of responding
and the obtained rate of reinforcement.

Either one of two factors could be responsible for the
increase in response rate. The correlation between
response rate and reinforcement rate had changed from
close to zero on the interval schedule to close to one on
the ratio schedule; such a change in correlation could
possibly affect behavior. Secondly, if reinforcement rate

rose slightly due to behavioral variability, it might in
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turn increase rate of responding, thus providing positive
feedback. In this case it would not be necessary for the
organism to be sensitive to correlations between response
rate and reinforcement rate. Ferster and Skinrer (1957)
ran an experiment designed to separate these two factors.
One bird was run on VI 5°, while a second bird was yoked
to it so that when the first received reinforcement, it
set up for the second. Their weights were adjusted so
that their response rates were approximately equal. The
first bird was then put on a VR schedule with the number
of responses per reinforcement approximately what it had
been on VI; the yoked bird continued to have reinforcement
set up by the first bird. By means of this design, both
birds received reinforcement at approximately the same
rate, but only the VR bird had a high correlation between
rate of responding and rate of reinforcement (Ferster and
Skinner refer to this as "the differential reinforcement
of rates or groups of responses" (p. 400)). After 29
sessions, the VR bird was responding at a substantially
higher overall rate than the yoked bird, whose rate had
changed little. In a second pair of birds, the bird
switched to VR failed to maintain responding, possibly
because it had few sessions under VI prior to being
switched.

While this experiment separated correlation frbm
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reinforcement rate, the fact that the effects were shown
in different birds leaves open the possibility that the
charactepistics of the individual birds contributed to the
effect. Probably the most persuasive experiment would
consist in running birds on both a family of VI and a
family of VR schedules, but this does not appear to have
been done. However, three kinds of experiments examining
both VI and VR in a single organism have been reported:
concurrent chains, with VI and VR in the terminal links;
concurrent VI VR; and multiple VI VR.

Herrnstein (1964) ran birds on a concurrent chains
schedule. Concurrent VI 1° VI 1° primed entries into the
second links; during six of the nine conditions, VI was
paired with VR in the second links. In general, rate of
responding during the VR second link was about twice that
of the VI second link, even though there was substantial
overlap between obtained rates of reinforcement. 1In spite
of these differences in response rates, it appeared that
choice during the initial 1ink was governed solely by
relative rate of reinforcement. Thus the higher response
rate did not detract from what could be called the value
of entering the two terminal 1links.

A concurrent VI VR was reported by Herrnstein (1970).
In this experiment, if the relative rate of responding for

the VI side was above about .5, birds tended to shaw

p——
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exclusive preference for the VI. Below .5, however, the
relative number of responses to the VI tended to match the
relative number of reinforcements obtained on that side.
Herrnstein reported that response rates for VR were about
twice those for VI. This implies that while response
ratios matched peinforcement ratios, time ratios showed
that twice as much time was spent on VI as on VR. 1In
other words, under the assumption that the birds were
matching time ratios to value ratios (ecf., Baum & Rachlin,
1969), time spent responding for VI was twice as valuable
as time spent responding for VR.

A multiple VI VR experiment has been reported by Zuriff
(1970), who used component durations of one minute. When
equal rates of reinforcement were obtained in the two
components, response rate was nearly twice as high for VR
as for VI. 1In a plot of respense rate as a function of
relative rate of reinforcement, the slope for the VR
function was in general 2.5 to 3 times that for the VI
component.

A number of suggestions have been put forward to
account for the difference in response rates under
interval and ratio schedules. Skinner (1938) discussed
three possibilities. If an animal is switched to a ratio
schedule from an interval schedule, with a requirement

that is smaller than the number of responses per
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reinforcement emitted on the interval schedule, an
increase in reinforcement rate will insue. If this leads
to an ingrease in response rate, both rates will climb
until some limiting factor is reached. This may be termed
a positive feedback model. Skinner also dealt with the
case of a larger requirement on the ratio schedule, which
generally leads to extinction. This model has more
recently been discussed by Herrnstein (1970).

Skinner’s second account is of a more local nature. If
an animal is switched to a ratio schedule with a
requirement the same as the number of responses per
reinforcement emitted on the preceding interval schedule,
rate of responding should eventually increase because a
ratio schedule tends to reinforce responses following
short intervals. In contrast, an interval schedule favors
responses following long intervals. It has been pointed
out (e.g., Morse, 1966) that on a ratio schedule the
probability of reinforcement does not change in the
absence of responding; nevertheless, interval and ratio
schedules still differ in the direction pointed out by
Skinner. An explanation in terms of reinforced
interresponse times (IRTs) has been subsequently used by
Anger (1956) to account for behavior on a VI schedule, and
by Shimp (1967) and Reynolds (1968) to account for

behavior on interval and ratio schedules.




Optimization

Finally, Skinner pointed out that while the time preceding
the reinforced response was important, the time preceding
previoup responses could also have an effect, though a
diminished one. Anger (1956) also conceded that such
effects might be present. A similar suggestion was put
forth by Dews (1962), who posited a delay of reinforcement
gradient. He suggested that if responding on an FR
schedule were rapid, all responses would be closer to
reinforcement, and hence be strengthened more, than if
responding were slower. Catania (1971) reported an
experiment designed to demonstrate the operation of such a
process.,

In addition to the three possibilities already
mentioned, a fourth, based on Skinner’s (1948)
superstition experiment has been suggested. Both Blough
(1966) and Killeen (1969) point out that on interval
schedules, as opposed to ratio schedules, behavior other
than pecking may tend to be superstitiously reinforced,
since the probability of reinforcement grows with periods
of not responding.

Several conclusions may be drawn from these experiments
and the related theories. Given a variable
interreinforcement requirement, schedules may be
decomposed into the nearly disjoint subsets of variable

interval and variable ratio schedules. They proddbe
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corresponding distinct effects on behavior. The
heterogeneity of plausible and mutually compatible
theorigs may either lead one to conclude that the
behavioral phenomena are adequately explained or, on the
other hand, that no definitive answer has been put forth.
Unfortunately, few conclusions with any greater strength

or generality have been drawn.
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Concepts from Optimization

The study of optimization is introduced by Luenberger

(1969) as follows:'

It is perhaps natural that the concept of
best or optimal decisions should emerge as the
fundamental approach for formulating decision
problems. In this approach a single real
quantity, summarizing the performance or value
of a decision, is isolated and optimized (i.e.,
either maximized or minimized depending on the
situation) by proper selecticn among available
alternatives. The resulting optimal decision is
takeén as the solution to the decision problem.
(p. 1)

There exist a number of approaches to optimization
theory (cf., Vagners, 1974). The particular approach
taken here 1is generally known as nonlinear programming
(Luenberger, 1973), but we may, though somewhat
inaccurately, simply refer to it as optimization
theory. This approach is very geometrical in character
(cf., Wilde, 1964), which will allow us to avoid a
great reliance on mathematical notation.

Typically, we begin with a space of some dimension,
to every point of which is asscciated some real number,

To be concrete, suppose we have a two-dimensional

11
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plane, with a number assigned to every point
representing the temperature at that point. We think
of there being a function, referred to as the

objective function, which assigns to every point in the

space the real number associated with that point. 1In
the case of temperature on the plane, the objective
function will have the form z = f(x,y), where x and y
are the coordinates of a point and z is the temperature
there.

For purposes of representation we may think of z as
a third dimension. If, as we move in any direction,
temperature changes in a continuous manner, then the
function f may be represented as a surface in 3-space,
as in Figure 1a. In what follows we will generally
treat the objective function as being well-behaved in
this sense, though if need be the assumption can always
be dropped. This surface will be referred to as the

response surface. The height of the surface above each

point represents the temperature of the plane at that
point, to continue the example. It will be convenient

to draw what are termed level curves; curves in the

surface where f takes on a constant value. 1In Figure

la, for example, curves are drawn at points where f

12
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Figure 1 about here

takes on the values 10, 20, and 30. If we then project
these curves onto the plane, as in the figure, we may
represent the three-dimensional surface in two
dimensions. These projections will be referred to as
contour lines, or simply contours. A well-known
example is the case of curves of constant elevation in
topographic maps.

We need to distinguish three classes of contour
lines. If a straight line drawn between any two points
on a contour does not cross the line except at those
points, the contour will be said to be gonvex,
otherwise concave. If such a line is neither tangent
nor crosses except at the two specified points, the

contour will be said to be strictly convex. These

possibilities are illustrated in Figure 2.

Figure 2 about here
In an optimization problem, one is given some space,
on which is defined an objective function f. The
solution to the problem consists in finding that point

where f is minimized or maximized. To continue with




Figure 1. (a): Representation of a function z = f(x,y)
in 3-space. The projections of curves of constant height
onto the x-y plane are also indicated. (b): By means of
projections onto the x-y plane, the function f may be

represented within two dimensions, as it is here.







Figure 2. (a): Projection of a convex level curve, (L)

concave level curve, and (c) strictly convex level curve.
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our example of temperature, it is known that for most
animals some optimal temperature range exists, the
average value of which may be referred to as the

preferred temperature (Fraenkel and Gunn, 1940).

Instead of plotting temperature of a plane as a surface
in 3-space, we may plot closeness to the preferred
temperature for some particular species. It would then
be expected that each member of the species introduced

onto the plane would end up at a local maximum of the

surface, a point or area such that all neighboring
points are lower in terms of preference. If the
surface were unimodal, we might find all members to

move to the global maximum, that point or area which is

highest.
If movement anywhere within the space is possible,
as in the case just considered, we say the problem is

one of unconstrained optimization, illustrated in

Figure 3a. In general we will be concerned with

constrained optimization, of which there are two major

categories. If we have an inequality constraint, it is

necessary to remain on or to one side of some boundary.

Two inequality constraints that must be satisfied




Figure 3., (a): Representation of an unconstrained
optimization problem. (b): A problem involving two
inequality constraints. The paralled lines indicate on
which side of each boundary a solution must be sought.
Constraint A is inactive, B is active. (c¢): An equality

constraint. - A solution must be sought while remaining on

the boundary.
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simultaneously are shown in Figure 3b. 1In this figure
the parallel lines are on the side cf the boundary on
which it is necessary to remain. Given such
constraints the optimal point falls on constraint B.
In such a case we say constraint B is active, while
constraint A is jinactive: the optimal point is an
interior point in terms of the set delimited by
constraint A. Finally, in the case of an equality
onstraint, one must remain on a border between two
regions (Figure 3c¢). An equality constraint is always
active. The region within which one must remain, with
or without constraints, is termed the feasible
region.

Given differentiable constraints (geometrically,
continuous smooth curves) and convex contour lines, the
maximum of an equality constraint or an active
inequality constraint will fall at a point wheré the
constraint is tangent to a contour, unless the
constraint passes through a local extremum cf the
surface. If, in addition, the contours are strictly
convex and the constraints linear, the constrained
maximum will consist of a single point; otherwise it
may consist of an interval.

We now have enough machinery to turn to the problem

of free operant behavior. Although behavior is
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sometimes said to have strength (Herrnstein, 1970), the
same results can be described by saying that behavior

has, or, has gained, value. This usage allows us to

consider both behavior and reinforcers as being mapped
onto a common dimension. (The position of Premack
(1971) is similar, but some important differences will
be pointed out later.) If both responding and
reinforcement may be said to have value, it would
appear reasonable to be able to assign a value to the
conjunction of any particular rate of responding and
rate of reinforcement.

These latter two variables have been used by Baum
(1673) to represent a family of VI schedules and the
resulting behavior; Figure 4 shows a similar plot.
Given this information, suppose we assume the bird to

D U S Y R WS

Figure Y4 about here
be maximizing value. If we take into account a result
of Findley (1958), who found that a bird tended to stay
with a richer VI schedule when a schedule only advanced
when responses occurred on the key associated with it,
we may hypothesize a surface with level curves similar

to those in Figure 5. The numbers next to each curve



Figure 4. A family of VI schedules represented as
functions relating reinforcement rate to response rate,

Hypothetical date points are also shown.




1go

Ynor

120

Yyad

S1NIWIIYOININY

o
L)

200

60

120

8o

Ho

PECKS PER MINUTC



Optimization
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Figure 5 about here

are only meant to indicate the ordinal height of the
surface. Curve 3, for example, is projected from a set
of peoints, all of equal height and all higher than
those points prdjected onto curve 2.

To abstract somewhat, it is being suggested that
every point with coordinates (P,R), where P is response
rate and R is reinforcément rate, has associated with
it a certain value: V = f(P,R). Although the function
f is unknown, we may hypothesize various properties it
may have and attempt to draw conclusions that may be
tested.

From the present point of view, a schedule is being
viewed as an inequality constraint. Since the organism
is free to respond, but does not have to consume
reinforcement, its behavior can fall anywhere on or
below the function. In practice, given a food-deprived
bird, eating in the presence of grain has such a high
probability that the inequality constraint is active,
in which case it is equivalent to an equality
constraint.

Given such a surface, if we consider the case of

ratio schedules it can be seen that higher rates of

17



Figure 5. A family of contour lines that would give
rise to the data points in Figure 4. Numbers next to each

curve indicate the height from which it was projected.
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responding for the same rate of reinforcement obtained
on an interval schedule can be deduced from the same
principle: maximization of value (Figure 6).

S S W W S e W W W S W

Figure 6 about here

This approach is not inconsistent with previous
accounts of responding on interval and ratio schedules.
Rather, we may view such accounts as suggestions of how
different points in the plane acquire value. Thus, it
is not being denied that reinforcing a particular band
of IRTs has a strong effect on behavior. Rather, it is
being suggested that such a schedule confers a high
value, relatively speaking, on a particular range of
response rates.

We can thus see that by assuming a fairly general
response surface, it is possible to deduce how ;n
organism will behave on any VI or VR schedule. Looking

at a schedule as a function relating rate of responding

and rate of reinforcement, we see that knowing the
specific shape of such a response surface for a
particular animal is sufficient to account for behavior
on any schedule that can be represented as such a
function: 1local maxima on the schedule correspond to

points of stability. It is not .necessarily possible to



Figure 6. When represented as a function between
response rate and reinforcement rate, VR schedules appear
as straight lines with positivé slope intersecting at the
origin. In this figure it can be seen how the contour
lines from Figure 5 give rise to higher rates of
responding on VR than on VI schedules, for a given

obtained rate of reinforcement.
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predict how fast an animal will respond, since some
schedules may contain multiple points of local maximum
value. .Although a knowledge of initial conditions
could aid with prediction, behavioral variability could
introduce a probabilistic element.

One qualification must be mentioned. In the case of
interval and ratio schedules, if we record response
rate and reinforcement rate over some period of time on
the order of a few hours, the point determined by these
values will fall close to the function, in spite of
behavioral variability. This may be contrasted with
what we might expect in the case of a schedule such as
DRL (differential reinforcement of low rate). If
reinforcement is dependent only on the duration of the
immediately preceding IRT, the same average rate of
responding can give rise to very different rates of
reinforcement, depending on behavioral variability. Ve
may refer to this first case as a global contingency,
and the second as a local contingency. In the absence
of knowledge of behavioral variability, such a surface
could only be applied to glcbal contingencies.

When we say that value is some function of rate of
responding and rate of reinforcement, we must
distinguish between two cases. 1In using this approach

in regard to data derived from averaging over a number
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of sessions, it is those average rates that become the
arguments of the objective function f. However, in
consideping an organism in the actual process of
responding and being reinforced, we cannot simply plug
an instantaneous rate of responding and reinforcement
into f, assuming this function to be known, and
calculate V. A reasonable approach to this problem
would be to view the organism as if it were in some
sense calculating instantaneous rates of these two
quantities by means of weighting functions, such that
more recent events are given greater weight than more
distant events. Such a weighting function is in effect
a short term memory. Both Catania (1971) and Hawkes
and Shimp (1975) have reported results consistent with
this view.

In the present discussion the organism is being
viewed as mapping a two-component vector (P,R) onto the
real 1line (that is, V takes on real values).
Theoretically, any number of components are possible;
for example, duration of reinforcement is obviously of
some importance. This model is being put forth not as
a complete account of behavior, but more as an
indication of the direction in which a complete account
could lie.

Although we have been referring to value, the

20
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dimension under discussion may be more appropriately
referred to as stability. Given certain conventions
with regard to what is meant by response rate and
reinforcement rate, what we may be said to observe in a
typical single-key experiment before a steady state is
reached is a change in the distribution of time spent
responding at different rates. Under such conditions,
we may say that one response rate, with its associated
rate of reinforcement, is more stable than a second if
the ratio if time spent at the first rate to that at
the second increases over time. Viewed in this way,
contour lines are curves of isostability: they are
composed of points of equal stability.

In order to infer the shape of a response surface,
the general approach would be to run an animal on a
schedule until its behavior is stable. Under the
assumption that the animal is maximizing value, it is
possible to say that a contour line is in general
tangent to the function for the schedule at the point
of stability; furthermore, points on the function that
are not stable can be assumed to result in less value
than points in their immediate neighborhood which are
stable. It is not clear whether there is some way of
saying how much less value one point may have than

another. However, if there is no way of inferriné such
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a quantity, then specific values are probably
immaterial. Rather, the ordinal relation between
points.may be all it is possible or necessary to know.
This point will be discussed in a later section.

Consider the case of a surface for which every
contour is strictly convex, and such that contours with
smaller perimeters are projected from greater heights
than those with larger perimeters. This implies that
any linear constraint has one maximum, which falls at a
point, rather than comprising an interval. If the
response surface of a particular animal were of this
nature, one could theoretically obtain a complete
plcture of the surface if it were possible to run the
animal on schedules correspcnding to arbitrary linear
functions. Every point in the plane except maxima,
minima, and saddle points, corresponds to the maximum
of a unique linear function. As every function.were
studied, the local slope of a contour would be
determined. It can be shown mathematically that in the
limit, as the number of schedules studied becomes very
large, one can infer the shape of contours. In
practice, of course, some more approximate method of
inferring contours would be used.

The usual way to program an intsrval schedule is to

read a tape loop at constant speed past a microswitch

22
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which can detect holes punched in the tape. When a
hole is read, reinforcement is set up and the tape
reader }s programmed to stop until that reinforcement
is collected, at which point it again starts. It is
possible to program schedules corresponding to linear
functions as follows. Interval schedules as usually
programmed are nonlinear (for convenience we may treat
the schedule and its function as identical) due to the
tape reader stopping when reinforcement sets up. We
may, however, allow the reader to run continuously,
except during reinforcement, and store uncollected

n

reinforcers in a bidirectional stepper, as in Figure 7.

L

Figure 7 about here

The stepper starts in state 0. Any time a hole.is
read, the stepper moves one state to the right. If a
respense occurs when the stepper is in state 1 or
greater, reinforcement is delivered and the stepper is
decremented one step. Thus, as long as responses occur
at least as often as reinforcers set up, the obtained
rate of reinforcement will approach the programmed rate
as time increases, and the function is linear with a

zero slope and positive intercept.

23
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Figure 7. Schematic of bidirectional stepper.
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In graphing linear schedules it is.convenient to ignore
the fact that; at low response rates, the schedules
becomes CRF (continuous reinforcement). For, while
reinfor;ers are collected according to CRF, they set
up according to the linear schedule. In any case,
behavior seldom drops so low as to make significant
contact with this part of the schedule. In speaking of
positive and negative intercepts it must be remembered
these are extrapolations from the schedules.

In the case of a ratio schedule, a tape reader is
moved a specified distance past a microswitch for every
response. Wﬁen a hole is read, reinforcement is |
immediately delivered. Such schedules, which provide
for a direct proportionality between response rate and
reinforcement rate, are linear functions as they stand;
they have po;itive slope and intercept at the origin.
If we cause both a ratio reader and an interval reader :
to feed into a bidirectional stepper in parallel, the
resulting function will be the sum of the two
functions. It will thus have positive intercept and
positive slope.

Two more possibilities exist. If we subtract an
interval schedule from a ratioc schedule, the resulting
function will have positive slope and negative

intercept. 1In order to do this it is necessay to-
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expand the bidirectional stepper to move in the
negative direction, below zero. When the interval
reader reads a hole, one step in the negative direction
is made; when the ratio reader reads a hole, one step
in the positive direction is made. The same
contingency forldelivery of reinforcement as before is
present. By subtracting a ratio schedule from an
interval schedule, functions with positive intercept
and negative slope may be generated. These functions
are illustrated in Figure 8.

ettt

Figure 8 about here
In the following experiments, when two schedules

were to be added, each had a variable
interreinforcement requirement. If either had had a
fixed requirement, this would have resulted in én
unwanted periodicity in received reinforcement rate.
When one schedule was subtracted from another, the
former had a fixed and the latter a variable
requirement. In this case it was assumed that the
fixed requirement would not give rise to a detectible
periodicity, while subtracting a schedule with a
variable requirement might lead to a large variance in

the distribution of interreinforcement times.




Figure 8. (a): Sum of interval and ratio schedules.
(b): Ratio minus interval schedule. (c): Interval minus

ratio schedule.
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Experiment 1: Functions with Negative Slope

As previously mentioned, simple schedules of
reinforcement may te fairly readily divided into two

classes, providing what may be termed local or global

centingencies. To date, the only schedule that has
provided for a negative correlation between response
rate and reinforcement rate has been the DRL schedule.
Since reinforcement on such a schedule depends only on
the duration of the immediately preceding IRT, the
contingency is a local one. Thus a linear schedule
with negative slope fills a gap by providing a global
negative correlation schedule. Under such a schedule,
any IRT greater than zero may be reinforced. Within
the present optimization framework, such schedules must
be used in order to examine those areas in which
contours have negative slope, if such exist.

There is some evidence that for pecking in pigeons,
as response rate decreases the slopes of contours pass
from having positive values through zero and become
negative. In other words, for a given rate of
reinforcement, below a certain rate of responding,
value may fall. Staddon and Simmelhag (1971) found
that on interval schedules a peck-reinforcement
contingency had little effect on rate of responding,

though it did cause responding toc be directed to éhe
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key. Staddon (1972, p. 226) refers to this rate as the
"natural" rate of responding. From the present
perspective we may think of "natural" rate as that
occurring on a function with zero slope, and recognize
that this does not exclude the possibility that some
tradeoff between a lower response rate and higher
reinforcement réte is possible. The present experiment
was designed to look for such a tradeoff.
Method

Subjects

Six White Carneaux pigeons and three homing pigeons
were used: twoc Carneaux and one homing pigeon in each
of three conditions. They all had prior experimental

histories, and were maintained at about 80% of free

feeding weight.

Aggaratus

A standard pigeon chamber was used, with a single
key about 8.5 in. (21 cm) above the floor, centered on
an 11 in. (28 cm) wide wall, above a standard feeding
magazine. A force of about 14 g (.14 N) was required
to operate the key, which was transilluminated with two
7-w red bults. An auditory feedback click was provided
for each response. The chamber was illuminated with
twoe T-w white bulbs, except during reinforcement, when

only the magazine was illuminated. White noise and a
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fan masked extraneous noise. Electromechanical
equipment was used, in conjunction with a PDP-8/e
computer, which provided timed pulses tc step a tape
reader ln order to set up reinforcements.
Procedure

Birds were first run on three negative slopes,
produced by subtracting a fixed ratio from a variable
interval schedule, the latter composed of 16 intervals
generated from Fleshler and Hoffman (1962). The
interval schedules used, in this order, were: VI 39"
(120 rf/hr), VI 45" (89 rf/hr), and VI 99" (40 rf/hr).
The interval tape reader did not stop, except during
reinforcement; a bidirectional stepper stored
uncollected reinforcers, from the interval reader, or
deficits, from the ratio reader. For one group of
birds, FR 20 was subtracted; for the second group, FR
40; for the third, FR 69. A mirnimum of 5 sec had to
elapse between the end of reinforcement and the
availability of the next, in order to prevent a number
of reinforcements from being ccllected in close
succession. Reinforcement consisted of 3 sec access to
mixed grain. Each session terminated after 40 minutes
or 40 presentations of grain, whichever occurred first.
Birds were run seven days a week. After running on

negative slopes with three different intercepts, ihey
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were run on three flat slopes with reinforcement rate
equated to the average of the last five days on each of
the negative slopes. In this case only the interval
reader ;as used, pulsed by computer with different
parameters for each bird. Each bird was run on a
condition for a minimum of about 20 sessions and until
its day to day behavior appeared stable. The first
condition was run for a minimum of abou* &0 sessions,
in case behavior under these schedules changed in an
unusually slow manner. The conditions and the number
of sessions each bird was run are summarized in Table
1. |

L o e e

Table 1 about here

Results
The schedules, and the points on those schedules
where behavior was stable, are presented in Figure 9,

which shows average rates from the last five days.

Figure 9 about here
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In Table 2 the overall response rates, reinforcement

rates, and session times are shown for the last five




Table 1. Conditions in Experiment 1 -and number of
sessions each bird run on each condition. 1In each case,
“flat” indicates a flat slope with reinforcement rate
equated.to that received on the corresponding negative

slope. All negative slopes were run in the order

indicated but before all flat slopes.

Schedules Subjects

Bird 19 Bird 47 Bird 93

a VI30"-FR20 65 67 69

b Flat 29 29 30

c VI4US"-FR20 23 23 23

d Flat - 25 24 43

e VI60"-FR20 24 ' 24 36

f Flat 23 21 -
Bird 140 Bird 150 Bird 94

g VI30"-FR40 71 63 70

h Flat 28 3y 24

i VI4S"-FRUD 23 23 23

j Flat 24 23 25

k VI60"-FRA40O 41 36 39

1 Flat 23 21 23



VIBO"TFR6O
Flat
VI4S"~FR6D
Flat
VI6D"-FR60

Flat

Table 1 (cont.)

Bird 52
Tl
&9
23
27
36
21

Bird 279
66
34
23
22
36
22

Bird 95
70
34
28
21

32




Figure 9. Left columns: behavior under linear
schedules with negative slopes. Right columns: Behavior
under linear schedules with flat slopes, with

reinforcement rate equated to that received under negative

slopes.
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Table 2 about here

- ————— T — . ———— -

days of each bird on each condition. 1In Figure 10 the
average change in response rate and reinforcement rate

is shown for each bird, as a function of intercept of

Figure 10 about here
the schedule. Applying a Wilcoxon matched-pairs
signed-ranks test (Siegel, 1956) to each group of birds
with the samé slope, only those birds with an FR 49
subtracted show a significant change, an increase in
response rate with the slope goinz from negative to
zero (n=9; 1 tail, p<.025; 2 tail, p<.05). With all
birds lumped together, by the same test there is a
significant increase in response rate going from P
negative to zero slopes (n=26; 1 tail, p<.025; 2 tail,
p<.05). Thus we can reject the possibility that a
significant decrease occurred, which is the only result
that would be damaging to the present position. Had
such a significant decrease occurred, it would imply an
increase in value as response rate decreased and
reinforcement rate remained constant. However, a

number of experiments suggest that with response rate

y: |




Table 2. Response rates; reinforcement rates, and

session times from last five days of each condition in

Experiment 1. P/M: Pecks per minute. R/H: Reinforcements
per hou}. M: Session time in minutes.
P/M R/H M P/M R/H M P/M R/H M
Bird 19. Bird 47 Bird 93
a 31.9 27.2 200.95 39.3 7.1 203.06 39.4 7.4 202.70
b 26.6 29.2 199.07 54.2 5.4 200.55 63.4 9.0 200.26
c 24.2 8.8 203.52 26.9 2.9 203.55 26.5 2.6 203.99
d 14,0 8.1 200.34 44.0 2.1 201.00 45.8 2.7 200.81
e 12.8 3.6 202.73 1.4 2.4 203.14 13.9 3.9 201.67
f 7.5 4.8 201.49 15.4 1.5 200.94 - - -
Bird 1490 Bi'rd 150 Bird 94
g 588 38.5 200,89 51.6 u48.0 200.10 34.9 69.2 173.45
h 59.4 39.8 198.7 36.2 50.2 198.19 57.0 T71.5 167.87
A 7.9 9.1 204.01 32.0 32.6 202.24 22.8 M44.9 201.95
J 5“.3 11?" 200.23 36.4 33.1 199.12 52.5 42.2 198.79
K 25.3 4.7 202.57 12.9 21.4 201.36 30.8 3.6 202.65
p | 42.8 5.0 201.59 34.2 21.9 200.18 42.0 2.7 201.28



Table 2 (cont.)

P/M R/H M P/M R/H M P/M R/H M

Bird 52 Bird 279 Bird 95
67.6 54.2 200.30 28.0 93.0 129.00 48.3 76.8 156.29
72.4 55.7 198.14 36.9 92.8 129.23 54.8 79.5 150.99
55.4 25.4 203.15 40.6 37.7 202.28 47.8 34.0 201.47
47.4 28.0 199.53 32.7 38.3 198.94 46.9 33.7 199.53
38.0 6.2 202.09 35.3 6.8 201.89 35.4 6.8 202.09
36.1 6.6 201.13 39.0 6.8 201.20 32.2 6.3 201.00



e —————

Figure 10. Average change in rate of responding and
rate of reinforcement going from negative slopes to flat

siopes.
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constant or allowed to increase, an increase in
reinforcement rate produces an increase in value. This
in turn implies that on the negative slope, a point of
higher ;alue existed than the one where behavior was
stable (see Figure 11). While this is not impossible,

it would imply a somewhat irregular response surface

which in turn would be a somewhat ad hoc explanation of

i ——

Figure 11 about here
the result. A larger effect might have been found,
were it not for the following procedural difficulty.
At the beginning of each session with negative slopes,
the bidirectional stepper started in state 0, so that
the nex; holg read in the VI tape reader could produce
reinforcement. During most of the session the stepper
was in a lower state. Presumabiy because of the higher
probability of reinforcement at the beginning of the
session, response rates at that time tended to be
higher than later in the session (c¢f., Catania &
Reynolds, 1968). If the stepper could have been
programmed to start where it had ended the previous
day, this transient higher rate would probably have

been eliminated.

31




Figure 11. Suppose that on schedule A behavior is

stable at point a, and on
Under the assumption that
in terms of reinforcement
terms of value, it can be
on A (point c¢) other than

stable has greater value.

B is stable at point b.
points on C that are higher
rate are also higher in
concluded that some point

that at which behavior was
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Discussion

In all cases, birds did not behave in a way which
maximized the rrate at which grain was received. The
result; from this experiment are thus in rough
agreement with those from studies on DRL. The results
appear to be consistent with an interpretation in terms
of a response surface, with maximization of value
determining stability. From that perspective, what
these results suggest is that, if reinforcers are being
delivered according to a flat function, the slope of
the local contour line is zero. However, if response
rate decreasés, the slope of the local contour becomes
negative rather quickly, which is equivalent to saying
that a large increase in reinforcement rate is
necessary in order to significantly reduce response
rate. This implies that Staddon’s (1972) statement
about a "natural" rate of pecking should be modified:
for each tradeoff between response rate and
reinforcement rate (slope of reinforcement function),
and each intercept of the reinforcement function, some
rate of responding is "natural!” in the sense that it
maximizes value. Presumably a different surface would

be obtained if another response, such as treadle

pressing, were used (cf., Hemmes, 1975).
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Experiment 2: Functions with Positive Slope

Before interval and ratio schedules can be
mezningfully thought of as elements from a larger space
of scheaules, it should be shown that schedules from
the larger space, other than interval and ratio
schedules, can produce behavior that could not be
produced by interval or ratio schedules. 1In other
words, if interval and ratio schedules can give us a
complete picture of an organism’s behavior, from the
point of view here under consideration, there is no
need to expand the number of schedules under which an
erganism is to be studied. The results of Experiment 1
suggest that, for a given rate of reinforcement, a
function with negative slope can maintain a lower rate
of responding than one with zero slope. In this
experiment, a zero slope is compared with two positive
slopes.‘ . '

Method
Sub jeects

Four White Carneaux and two homing pigeons were
used; all six birds ran in the same conditions. They
had had prior experimental histories, and were
maintained at about 892% of free feeding weight.
Apparatus

A standard pigeon chamber was used. The front wall



Optimization - 34

was 12 in. (30 cm) wide, with a key about 10 in. (25
cm) above the floor, 5.5 in. (14 cm) from the right
wall; directly below it was a standard grain magazine.
A force of about 14 g (.14 N) was required to operate
the key, which was transilluminated with two 7-w green
bulbs. An auditory feedback click was provided for
each response. The chamber was illuminated with two
7-w white bulbs, except during reinforcement, when only
the magazine was illuminated. White noise masked
extraneous sounds. A PDP-8/e computer controlled the
experiment and collected data.
Procedure

Birds were first run on a schedule with a flat slope
which provided 60 reinforcements per hour, with
variable intervals from Fleshler and Hoffman (1662).
After their behavior stabilized, they were run on a VR
100, with either a VI schedule added, or an FI schedule
subtracted, so as to maintain reinforcement rate at
approximately what had been obtained in the first
condition. Parameters were adjusted approximately
every two to three days when deviations from the
appropriate reinforcement rate occurred. Finally, they
were run on VR 200 with the same contingencies in
effect. Reinforcement ceonsisted of 3 sec presentation

of mixed grain. Following reinforcement, a minimum of
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5 sec had to elapse before reinforcement could again be
obtained. Sessions ran until 40 reinforcements were
presented or 40 min elapsed, whichever occurred first.
Session; were run seven days a week. Each bird was run
until all birds had run at least 30 sessions and there
were five consequetive days that appeared stable. The

conditions and the number of sessions for each bird are

shown in Table 3.

e e S S WS W S A

Results
Looking at the last ten days of all birds for the

two conditions which involved changes of parameters
(conditions with a VR component), there were a total of
eight changes of parameters out of these 12 cases.
This is evidence that by the end of these conditions,
day to day reinforcement rates were essentially statle.

In Figure 12 are shown the schedules and the points
showing average response rates and reinforcement rates

for the last five days.

- ——— . — - —— -~ —— -
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In Table 4 are shown

35




Table 3. Conditions in Experiment 2 and number of
sessions each bird was run on each condition. Both VR 100
and VR 200 conditions had, in addition, interval schedules

L

added or subtracted.

Schedules Subjects
Bird 9 Bird 53 Bird 96
a VI 60" 45 us 4s
b VR 200 4y 46 48
e VR 109 54 51 51
Bird 55 Bird 83 Bird 97
a VI 60" 45 45 4s
b VR 200 48 48 46

e VR 100" 51 ' 52 49




Figure 12. Rates of responding and reinforcement under
schedules with (a) flat slope, (b) slope determined by VR

200, and {(c) slope determined by VR 109.
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the overall response rates, reinforcement rates, and
session times for the last five days for each bird.
These data are reploted in Figure 13 to emphasize rate

- —

Figure 13 about here

information. It can be seen that in five cases out of
six there is a monotonic increasing relation between
slope of the reinforcement function and rate of
responding. A Wilcoxon matched-pairs signed-ranks test
was done on the differences in response rates between
VI and VR 200, and VR 200 and VR 100 conditions.
Overall, these differences showed a significant
increase (n=12; 1 tail, p<.005; 2 tail, p<.01).

Discussion

These results are consistent with the concept of a
response surface with contours that, moving to the
right, pass through zero and increase. The results
appear inconsistent with the view that interval and
ratio schedules are two disparate cases; rather, it
appears possible %o go continucusly from one to the

other and produce a continuous change in behavior.

r\’r'




Table 4. Response rates, reinforcement rates, and

session times from last five days of each condition in

Experiment 2. P/M: Pecks per minute.

per hour. M: Session time in minutes.

R/H: Reinforcements

P/M R/H M P/M R/H M P/M R/H
Bird 9 Bird 53 Bird 96

a 43.1 60.2 194.2  56.5 58.1 199.2  57.7 58.9
b 52.4 60.0 193.9  83.6 59.1 197.9  94.3 61.3
¢ 60.0 59.6 195.2 117.0 57.4 199.7  78.2 59.1
Bird 55 Bird 83 Bird 97

a 101.9 57.2 197.0  62.3 62.6 189.6  60.5 61.9
b 122.9 57.7 196.6  78.7 62.1 187.4  85.7 61.4
¢ 130.0 56.7 199.9  80.3 63.1 189.2  86.9 60.4

195.6
191.8
196.8

189.9
191.6
188.6




Figure 13. Rates of responding and reinforcement as a

functicn of schedules with different slopes.
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It could be argued that behavior on the sum of interval
and ratio schedules simply reflects a conjunction of
the efchts of these two schedules. For example, the
interval component might reinforce long IRTs, and the
ratio component short IRTs. However, the present
approach is not intended to disprove such a
possibility. Rather, it is designed to provide a

coherent summary of those effects that are found.
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Concurrent Schedules

On concurrent schedules, two basic distributions of
behavior have bzen reported. On concurrent VI
schedulés, a matching relation between relative
response rate and relative reinforcement rate is often
found (Herrnstein, 1961, 1970). On the other hand, on
concurrent VI schedules with only one tape reader
running (Findley, 1958), on concurrent VR schedules
(Herrnstein & Loveland, 1975), and on the similar
discrete trials probabilistic reinforcement where every
response has a nonzero probability of reinforcement
{Shimp, 1966), nearly exclusive preference for the side
providing the higher rate of reinforcement (given that
they are different) is found. Later the question of
whether this is also matching will be brought up.

There exist a number of explanations of these
results; Herrnstein (19792) argues that the behévior of
matching is the expression of a matching law which is
an inherent part of an organism. This view may to some
extent be characterized as a denial that matching is
the outcome of other processes. For example, Shimp
(1966, 1969) argues that matching is the result of an
organism’s emitting that response wnich has the higher
probability of reinforcement at the time; this process

is referred to as momentary maximizing. According to
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Shimp, such a process in turn implies global
maximizing: the overall rate of reinforcement is
greatest if momentary maximizing is followed. Shimp
holds t;at this process can account for both
probabilistically reinforced choices and concurrent VI
schedules.

A third possibility, which is perhaps closer to the
position of Baum (1973) than anyone else, would view
matching as maximization of global reinforcement rate,
but in a way that was not as tightly constrained on a
molecular level as Shimp suggests is the case. For
example, behévioral variability could lead to
oscillations around matching; deviations from matching,
resulting in a lowered overall rate of reinforcement,
could move the distribution of responses in the other

direction. This position may be called global

maximization. '

A fourth explanation is based on the fact that
animals tend to matech both time and response ratios
(Catania, 1966). This in turn implies that the local
rates of reinforcement and responding are equal for the
different alternatives. Rachlin (7973) imputes to
Killeen (1972) the view that responding in the presence
of a lower rate of reinforcement becomes aversive,

causing a bird to switch to a key with a higher rate of
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reinforcement. This behavioral mechanism, coupled with
concurrent VI schedules, in which the longer one spends
on a side the lower the local rate of reinforcement, is

sufficient to predict time and response matching. We

may refer to this position as local maximization.

Rachlin then points out that data of Nevin (1969)
showing a decreased probability of changing over as
more responses are emitted on one side goes against
Killeen’s position; Rachlin himself then adopts the
position that matching on a local level, so that the
relative rates of responding and reinforcement are .5,
is basic. This position does not substantially differ
from that ef Herrnstein; only a different time base is
involved.

Let us see how these different positions relate to
the datg. An account in terms of matching can account
well for behavior on concurrent VI schedules. However,
there is a limitation. If a bird put all of its
responses on one side, thereby earning all
reinforcements from that side, matching would still be
preserved. Thus matching does not exclude exclusive
preference on concurrent VI schedules. 1In the absence
of knowledge in regard to how matching comes about in a
situation in which an organism 1s not originally

matching, one might expect matching by means of

40
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exclusive preference to be as common as matching with
behavior distributed between the two alternatives. On
concurrent VR schedules matching predicts exclusive
prefere;ce if the schedules differ, but does not say
which of the two schedules will be preferred,
Herrnstein and Loveland (1975) appear to conjoin
matching with a global maximization process to account
for the nearly exclusive preference for the better of
two VR schedules which they find. The same
considerations apply to Findley’'s (1958) finding of
exclusive preference for the better of two VI schedules
when only oné~tape runs at a time. Thus, although
matching is consistent with these data, it is also
consistent with possibilities which do n&t obtain.
Global maximization, in the sense of maximizing rate
of grain presentation, is inconsistent with the results
of Experiment 1 with negative slopes. 1In that.
experiment, when run on negative slopes, response rates
were sufficiently high to keep reinforcement rates much
lower than they could have been (see Figure 9). Thus
this principle cannot constitute a general account of
behavior. In the case of ratio schedules, or more
generally linear schedules with positive slope, both
momentary maximizing and global maximization can avoid

the prediction of infinite response rates only on an
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d hoc basis. We will return to these positions when

[\

discussing data from some concurrent experiments below.

A local maximization approach may be modified in the
following direction. We may think of a bird as
distributing its time between two alternatives in some
fashion. If the time spent on one alternative results
in a higher rate of reinforcement while on that side,
that should result in an increase in time spent on that
side, simply by virtue of a higher rate of
reinforcement being obtained on that side. As
Herrnstein and Loveland (1975) state: "It is axiomatic
that, given incompatible responses that differ in
reinforcement and given that the difference has been
detected, a subject will choose the more highly
reinforced alternative" (pp. 113-114). However, as
Rachlin (1973) points out, by putting more time on the
locally better side on concurrent VI schedules, the
local rate of reinforcement on that side decreases and
increases on the other.

The only mechanism it is necessary to postulate is
one that will shunt behavior in a continuous manner
from a locally poorer alternative to a locally richer
alternative. On concurrent VI schedules, this
mechanism would damp out deviations from matching

because they result in an increase in disparity bétween
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local reinforcement rates, in a direction tending to
drive the distribution of behavior back toward
matching. On concurrent VR schedules, and concurrent
VI with.one tape reader moving, the same mechanism will
tend to drive behavior toward exclusive preference for
the better side.

Previously, it was suggested that if while
responding on one key, if one rate of responding has
greater value than another, relatively more time than
before will be spent responding at the rate with the
greater value. The schedule may or may not change as
more time is'spent at a particular rate of responding.
On concurrent schedules, we may consider value, rather
than simply reinforcement rate, to affect distribution
of behavior. If, while responding on one side, greater
value is produced per unit time than is obtained on the
other side, khe same mechanism that adjusts response
rate on a single key will distribute more time to the
better side. This suggests a hierarchical organization
of behavior. On one level (e.g., while responding on a
key) choice, or rate or responding, is governed by
value deriving from such responding. On a higher level
(e.g., choosing between two keys) choice is governed by
a comparison of the values resulting from responding on

each of the keys. However, another possibility also
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exists. Suppose a bird responds 6n a single key at two
rates in alternation, each giving rise to a different
value. More time should subsequently be spent at the
rate wiéh higher value. It appears plausible that it
may make little difference whether the two rates occur
on a single key or whether they are on separate keys.
In either case, ihe identical operation appears to be

in effect.
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Experiment 3: Concurrent Flat Slopes

On a single VI schedule as usually programmed,
reinforcement rate is affected to some extent by
respons; rate, since after a reinforcer is made
available, but before it is collected, the tape reader
is stopped. On concurrent VI schedules we may expect
such an effect to be amplified, since reinforcement may
set up while responding is occurring on the other key;
in addition, a COD may lengthen the time during which a
tape reader does not operate. With a long COD, for
example, Shull and Pliskoff (1967) found the obtained
relative ratés of reinforcement to differ substantially
from the programmed relative rates. Stubbs and
Pliskoff (1969) used a procedure that controlled
relative rates of reinforcement, but absolute rates
could still be affected by behavior. Since, whenever
one tapé reader sets up both readers stop, it is
plausible that overall reinforcement rate will be more
affected by behavior than if the tapes moved
independently.

If a linear schedule with flat slope is used, rather
than a normal VI schedule, good control is obtained
over absolute reinforcement rate, as long as responses
occur at least as often as reinforcement sets up. Used

in a concurrent situation, this means that both
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absolute and relative reinforcement rates are under
greater experimental control than is produced by other
procedures. An implication of this is that, given at
least some minimum response rate on each side,
practically any distribution of responses will earn the
programmed rate of reinforcement. This procedure thus
excludes the possibility that only at matching is the
global rate of reinforcement maximized. 1In this
experiment, run with H. L. Miller Jr. and D. H.
Loveland, concurrent flat slopes were studied.

Method
Subjects .

Four White Carneaux pigeons with prior experimental
histories were used. They were maintained at about 80%
of free feeding weight.

Apparatus

A standard pigeon chamber with two keys was Uused.
The two keys were at the same level, 5 in. (13 cm)
apart, centered on a wall 11.5 in. (29 cm) wide, about
9 in. (23 cm) from the floor. A standard feeder was
centered on the wall below the keys. A force of about
14 g (.14 N) was required to operate the keys. The
left key was transilluminated with two 7-w green bulbs,
the right key with red bulbs. The chamber was

illuminated, except during reinforcement, with two 7-w
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white bulbs; during reinforcement only the hopper was
illuminated. White noise and a fan masked extraneous
noise.* A PDP-8/e computer controlled the experiment,
in conjunction with external tape readers.
Progedure

Five conditions were run, in each of which a total
of 90 reinforcements per hour were programmed. Two VI
tape readers with 12 intervals generated from Fleshler
and Hoffman (1962) ran continuously during the session,
except during reinforcement. Uncollected reinforcers
were stored py computer in a simulated bidirectional
stepper. The VI values used, on left and right keys
respectively, were, in this order: VI 120" and VI 60";
VI 629" and VI 129"; VI 48" and VI 240"; VI 80" and VI
89%; VI 240" and VI 48". A 3 sec COD was in effect; in
addition, a minimum of 3 sec had to elapse before a
second reinforcement (or more) could be collected from
one side. Sessions terminated with the presentation of
40 reinforcements, and were run seven days a week. In
addition to response and reinforcement count,
distributions ef the number of responses to a side
before changing over were collected. Sessions were run
until all birds appeared stable. In Table 5 are shown

the conditions and the number of sessions each bird
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was run on each condition.
Results
Figure 14 shows, for each bird, logged ratios of

responses as a function of logged ratios of reinforcers

———— e

e

received, along with a least-squares linear fit. These
ratios were calculated from the average response and
reinforcement rates for the last five days. 1In
general, response ratios exhibited some undermatching.
The 95% confidence intervals for the slopes are also
shown. 'For fwo out of four birds this range includes a

slope of one. In Table 6 are shown overall response

rates to the two keys, reinforcement rates, and session
times from the last five days for each bird. Figure 15

shows the data from all birds, with each bird s data

48




Table 5. Conditions in Experiment 3 and number of

sessions each bird was run on each condition.

VI values Bird 45%6 Bird 475 Bird 468 Bird 3090

a 120" * 69" 25 25 25 25
b 60" 120" 37 37 36 36
c 48" 240v 35 35 34 32
d 8o" 8o © 22 25 24 20

e 240" 48v 24 28 31 35




Figure 14. Logged ratio of responses to two keys as a
function of Iogged ratio of reinforcers received on those
keys. B -,P: total pecks left and right. R_,Re: total
reinforcers left and right. The heavy line indicates the
least-squares linear fit, whose equation appears below the
graph. The dotted line indicates matching. The
percent;ge of variance accounted for by the linear
equation, and the 95% confidence interval of the slope are

indicated.
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Table 6. Overall response rates and reinforcement
rates to each key, and session times from last five days
of each condition in Experiment 3. P/M: Pecks per minute.
R/H: Reinforcements per hour. M: Session time in minutes.

L,R: Left, right keys.

P/M R/H M

105 R | L R

Bird 456
a 17.3 42.4 31.1 _61.7 129.40
b 21.7 24.8 62.6 30.8 128.34
c 30.0 13.1 80.6 14.8 125+81
d  19.8 36.4 48.0 45.2  128.81
e 9.0 40.8 15.0 78.6 128.29

Bird 475
a 14.6 36.4 28.8 61.3 133.18
b 40.8 19.2 60.9 30.7 131.02
¢ 16.0 11.5 76.8 16.6 129.67
d  10.8 21.8 44.7T 48.4  128.95
4.9 31.2 14.6 76.9 131.05

o®




Table 6 (cont.)

P/M R/H M
L R L R
Bird 468
37.5 46.4 30.0 60.8 132.21
42,6 ~17.0 ~.60.4 314 138219
52.0 11.1 79.9 13.5  128.47
45.0 38.9 44.8 44,3 129.90
19.5 54.9 15.1 79.3 127.08
Bird 300
36.3 61.1 32.3 58.7 131.82
51.0 32.6 60.5 28.9  134.81
57.7 8.7 TH.T 14.8  134.12
41.3 36.6 44.T 45.6  132.96
18.0 56.0 14.0 76.3 132.89
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Figure 15 about here
adjustéﬁ so that its linear regression function passes
through the origin. The 95% confidence interval does
not include a slope of one. In Figure 16 are plotted
changeovers per opportunity for Bird 300, whose

Figure 16 about here
behavior was closest to matching. These points were
calculated from the distribution of number of responses
before changing over in a manner analogous to that used
by Anger (1956) to calculate IRT per opportunity.
These graphs thus give the probabilitty of changing
over as response count on a side increases.

Discussion

Although there are deviations from matching, the
closeness to matching that is found argues against an
explanation of matching in terms of maximization of
global reinforcement rate. If such an explanation were
true, for any given ratio of reinforcements we should
expect to find a ratio of responses that was
independent of the reinforcement ratio; these results

suggest a strong functional relation. A t-test to

49




Figure 15. Logged ratio of responses for all four
birds as a fﬁnction of logged ratios of reinforcers
received, The intercepts for each bird have been adjusted

to pass through the origin.
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Figure 16. Changeovers per opportunity for Bird 309.
These graphs'show, for each consecutive response to a side
the probability that the next response will be directed at

the other key.
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determine whether the slopes were significantly
different from zero was done for each bird, since lack
of a functional relation should tend to produce a zero
slope. ‘The levels of significance, using a 2-tail
test, were: .001, .05, .002, .01. The results thus
differ significantly from what would be predicted if
overall rate oflreinforcement were governing the
distribution of responses between the two alternatives.
Thus, a distribution of responses that is close to
matching cccurs when overall reinforcement rate is
independent of the distribution of respcnses. The
undermatching that occurs may result in some way from
the inhomogeneity of reinforcement rate on each key.

If several stored reinforcers were collected within a
short period of time, the effect might be different
from what would have occurred had the tape readers
stopped'upoﬂ setting up reinforcement. What appears as
an increase in variance to the right in the group data
(Figure 16) probably results from deviations from
linearity of Birds U475 and 399.

It appears likely that Shimp would predict a
well-defined step in the plot of changeover per
opportunity, since in a discrete trial situation
momentary maximizing predicts a specific number of

responses to each side before changing over (Shimp,

50
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1966). 1Tt seems plausible that in this continuous
procedure, momentary maximizing would also predict a
certain number of responses to each side before
changiné. In two cases out of 49 (two keys, four
birds, five conditions) there does appear to be a sharp
increase in changeover probability, so such a result is
not impossible. The general finding, however, is
similar to the pattern exhibited by Bird 300. This may
be characterized as a near zero probability soon after
changing to a key, followed by a fairly rapid increase
to a constant probability of changing, that is, to a
Poisson procéss.

The initial low probability of changing is likely to
be due to the COD, at the end of which any
‘reinforcement set up while responding on the other side
or during the COD will be collected. (The step seen at
the right in some cases results from the method of
collecting data: in the last bin, the probability of
changing must be one.) This pattern of changing
differs from the results of Nevin (1969), who found a
decrese (in general), starting from a high probability
at the beginning. This difference may be accounted for
by the fact that Nevin was using a discrete trials
procedure, with no penality for changing over (ecf.,

Herrnstein, 1961). In summary, althcugh this pattern
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is not predicted from a local maximization process,
neither is it excluded by such a process. Tt is, on
the other hand, excluded by a momentary maximization

process'.

52
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Experiment 4: Concurrent Negative Slopes

Concurrent flat slopes neither reinforce nor punish
matching, in that most deviations from matching do not
affect ;einforcement frequency. On concurrent negative
slopes the situation can arise where, if a bird is
responding at some overall rate and matching, a
redistribution of responses will both increase
reinforcement rate and produce a deviation from
matching. Given that responding is sufficiently rapid,

such a procedure can thus pit global maximization

against matching.

Sub jects-

Six White Carneaux pigeons were used, three in each
of two conditions. They did not have long experimental
histories, apd were run af about 80% of free feeding
weight.

Apparatus

Two standard two-key pigeon chambers were used, one
for each condition. The first chamber was the same as
that used in Experiment 3; the two experiments were run
at different times of the day. 1In the second chamber
two keys 6 in. (15 cm) apart at the same level were
centered on a 12 in. (39.5 cm) wide wall; they were G

in. (23 cm) from the floor. A standard food hopper was
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centered below the keys. The left key was
transilluminated with white light from two 28-v D.C.
(2-w) bulbs; the right key with green light. The
chamber'was continuously illuminated by two 7-w white
bulbs. A force of about 14 g (.14 N) was required to
operate the keys. Responses produced an auditory
feedback click. During reinforcement, the key lights
were extinguished, the house lights remained on and the
hopper was illuminated. Both chambers were controlled
by a PDP-9T computer.
Procedure

In the first chamber, concurrent negative slopes
with the same intercepts were used. Two independent VI
45 sec tapes were simulated by the computer, with 29
intervals from Fleshler and Hoffman (1962). These
added into two simulated bidirectional steppers, from
which fixed ratios were subtracted. The sum of the two
fixed ratios was 80. Five conditions were run. The
fixed ratios used, for left and right respectively,
were, in this order: 60 and 292; 30 and 59; 50 and 30;
20 and 60; 40 and 40. In the second chamber the same
contingencies were in effect, except that the VI for
the left key was 60 sec, and for the right key, 30 sec.
At the end of each session the positions of the VI

schedule, FR schedule, and stepper were printed out,

o]
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and entered at the beginning of that bird’s session the
next day. The program was thus in the same state when
it stopped one day and started the next. A 3 sec COD
was in ;ffect, and a minimum of 3 sec had to elapse
between one reinforcement and the next. Reinforcement
consisted of 3 sec access to mixed grain. Sessions
terminated after 40 presentations of grain or 35 min,

whichever occurred first. Sessions were run seven days

a week, until behavior appeared stable. In Table 7 are

- —

Table 7 about here
shown the various conditions and the number of sessions
each bird was run in each condition.
Results

In Figure 17 are shown the schedules on which birds
were run, and the logged ratios of respons2s as a
function of logged ratios of reinforcers received;
these data are averages of the last five days on a
condition. In addition, the best fitting linear

Figure 17 about here

R S S T S R e W S W e

regression is shown. The 95% confidence interval for




Table 7.

sessions each bird was run on each condition.

Conditions in Experiment Y4 and number of

Schqdules Subjects
VI 4s5% 4s5¢ Bird 58 Bird 59 Bird 62
a 69,20 20 21 20
b 30,59 24 31 21
c 50,30 24 25 28
d 20,60 23 23 27
e 40,40 29 24 28
VI 60" 30" Bird 175 Bird 176 Bird 111
f 60,20 23 24 24
g 39,50 21 20 22
h 59,30 28 28 27
i 29,60 28 27 25
'J 40,40 28 30 28




Figure 17. For all six birds, the schedules under
which it was run are shown. 1In addition, logged ratios of
responses as a function of logged ratios of reinforcers

are shown, along with a least-squares linear fit.
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the slope is also indicated. In the case of equal
intercepts there is a tendency for undermatching; for
two out of three birds in the case of unequal

intercepts the slope of the least-squares linear fit is

close to one. 1In Figure 18 the response ratios as a

function of reinforcement ratios are plotted separately
for the two groups of birds. The overall response
rates, reinforcement rates, and session times are shown

in Table 8.

T e S S S W e T S S G e S W S

Table 8 about here
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Discussion

This experiment extends the results of Experiment 1,
and shows that global maximization of reinforcement
rate, if pitted against matching, does not contrcl the
distribution of responses. For two out of three birds
in each of the two conditions the 95% confidence
interval includes a slope of one. In some cases the
plots of logged response ratios do not fall very close
to a straight iine. Under concurrent variable interval

schedules, reinforcement rates on each side are only

56
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Figure 18. Logged ratio of responses as a function of
logged ratiorof reinforcers for the two groups of birds.
Prior to 'plotting, each bird s 'data points were adjusted
so that the least—squareé linear fit passed through the

origin.




VIl 4§~ 4us”

i i i i i i H
R I e 0 3 .S
tos &
Rr
Vi go” 30" o
rd
1} .

- | i A 2 L L
-3 -1 ! o | S .3 .9
Los B



Table 8. Overall response rates and reinforcement
rates to each key, and session times from last five days
of each condition in Experiment 4. P/M: Pecks per minute.
R/H: Reinforcements pef hour. M: Session time in minutes.

L,R: Left, right keys.

P/M R/H M
L i R

Bird 58
at = 65,9075 7 162 . 3 17570
b 35.5 58.3 9.2 10.3 175.0
¢l W12 3.3 ¢ 3T .01 7 172.8
d 26.0 69.2 4.1 13.0 175.0
e 46.0 50.3 10.6 4.8 175.0

Bird 59
a 28.0 10.9 52.4 U4T.4  120.2
b w2258 “22.3 i3 52{7l W437%e
¢ 21.4 16.2 S54.2 48.1 117.3
d 17.2 24.9 28.2 54.8 14U,y
e 16.7 20.0 54.7 50.5 114.1

Bird 62
a 66.6 25.7 13.7 4.1  175.0
b 37.8 58.6 3.8 9.2 175.0
el - 588 36, 10,1 " =3.8 1 Il
d 26.6 65.1 2.0 15.1 175.0
e 43.3 41.6 15.3 17.4  172.2
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Table 8 (cont.)

51.0
38.3
49.9
29.0
Y. 7

47.0

46.90

33.4
27.6

71.ﬁ
50.2
61.6
39.2
70.2

P/M R/H
R L R
Bira 175
14.0 69.4 18.4
26.1 4y, 6 29.4
20.1 ‘ 60.6 20.7
29.3 R3 Sir 31
22.6 53.2 25.6
Bird 176
=ik 72.1 20.9
25.1 59.8 29.5
19.4 64.9 21.0
37.7 20.2 22.3
16.4 79.0 A36.3
16.“ 4g9.0 4.8
36.2 212 16.8
25.3 46.3 9.0
49.3 3.8 10.6
34.3 4.4 9.2

136.
161.
147,
167.
152.

129.
134,
139.
175.
104.
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175.
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175.
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slightly under the organism’s control. In the present
experiment, a change in behavior could have a
substantial effect on reinforcement rates; this fact

L]

may account for the somewhat noisy results in some

cases.
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Summary, and a dynamic model

To summarize, there are two classes of theories
which relate to the present account. The first class
deals with behavior on single-key interval and ratio
schedules. 1In general, these theories appeal to the
strengthening effect of reinforcement on the preceding
behavior, although a more global positive feedback
model has also been proposed. Within the present
account, these theories are viewed as quite possibly
correct, but essentially incomplete, approaches to
single-key responding.

Previous accounts of responding on concurrent
schedules, the second class of theory, are viewed
somewhat more critically. Experiment 3 strongly
suggests that momentary maximizing, emitting that
response which has the highest momentary probability of
reinforcement, is not a viable theory. Global .
maximization, although not strongly espoused by anyone,
was also shown not to account for certain results. And
it may be said that the phenomenon of matching has in a
sense been explaned, as resulting from the operation of
a particular form of maximization.

To summarize the present model, on a single
manipulandum value is assumed to be some function,

possibly unimodal, of response rate and reinforcement

5
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rate. Viewing a schedule of reinforcement as a
constraint, the organism is assumed to behave in a
manner which maximizes value, at least locally, while
satisfying whatever constraints are present. The first
experiment suggests that, in the case of pigeons
pecking a key for grain, the slopes of the contours
become negative and quite steep after passing through
zero, as response rate decreases. Although limited to
only one rate of reinforcement, the second experiment
suggests that the slopes of contours increase in a
gradual manner from zero, as response rate increases.
Figure 19 shows a response surface that is in
qualitative agreement with Experiments 1 and 2.

R W T

Figure 19 about here

Looking at the points where contours have a slope of
zero, an increase in reinforcement rate gives rise to
an increase in response rate, which may asymptote.
Data from Catania and Reynolds (1968) derived from a
family of VI schedules suggest this characteristic, as
do the flat schedules in Experiment 1. Going to the
left, contours become steep rather quickly. This is
intended to account for the difficulty of decreasing

response rate when a negative slope is compared to a




Figure 19. Hypothetical response surface consistent

with results of Experiments 1 and 2.
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flat slope, with equal reinforcement rates. Going to
the right past the zero slopes, the slopes increase
rather gradvally. This is suggested by the gradual
increase in response rate with an increase in slope
found in Experiment 2.

Concurrent schedules are approached by assuming that
individual keys are evaluated separately, and that if
one key gives rise to greater value than a second, more
time will tend to be distributed to the first and less
to the second than was the case in the past. 1In Figure
20 we see how local rate of reinforcement on the two

S —————— - —————— - ———— -

Figure 20 about here

keys in the third experiment theoretically varied as a
function of relative time on the two keys. When
matching obtains, the local rates of reinforcement are
equal. This may be expressed as:
i PR T A

where r; is the total number of reinforcers on one
side, and T; is total time on that side.

Consider now concurrent VR VR, assuming equal rates

of responding on the two sides. The local



Figure 20. Theoretical local rates of reinforcement in
Experiment 2 with Cone VI 2° VI 17 in effect, as a
function of relative time on the right key. The

intersection of the two functions corresponds to matching.
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Figure 21 about here
reinforcement rates are shown in Figure 21. 1In this
case the following holds:

gev s RN o S PN R R v A
That is, the local reinforcement rates are constants,
and differ if the VR schedules are different. As
T,/(T, + T,) approaches one, both r, and T, approach
zero, but their ratio remains constant. At exclusive
preference, then:
iy Al >%_3E BAL:

From this point of view it would not be appropriate to
say that the local reinforcement rates had become
equal. If we take this equality of local reinforcement
rates as our definition of matching, then we cannot say
that matching obtains in the case of a concurrent VR VR
with different ratio requirements.

The issues under discussion can be brought into
better focus by setting forth a dynamic model of
behavior: one that attempts to describe how behavior
changes over time. We know how a dynamic model must
behave under constant conditions as time grcws large,

since it must then iead to the steady-state model

already presented. Previously it was said that the

61



Figure 21. Local rates of reinforcement on concurrent
VR VR as a function of relative time on the right key,

assuming a constant rate of responding to bcth keys.
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only assumption it is necessary to make is that, over
time, more time tends to be distributed to a locally
better alternative and less time to a locally poorer
alternative., This would suggest a model of the form
dT, /dt = g(V, - V,) = -dT,/dt
where V; is the value in situation i and T; is time in
that situation. We may assume g to be monotonically
increasing and symmetrical about the origin (so that
g(0) = 2). A simple function satisfying these
constraints is the identity function, which will now be
employed with the proviso that this is a tentative
assumption. This gives:
dT, /dt = Vv, -V,

However, unless 1im V, = V, as T,-~ 0, this function
makes the erroneous prediction that time in a situation
can confinué to increase, even when all time is spent
in that situation. We can remedy this by introducing a
multiplicative factor h(T; ) which goes to zero as time
in the poorer situation i goes to zero; again an
identity function is employed:

dIiddt = Tg (¥, =V ) = =»dT./dt
where V, > V,. More abstractly, between any two
situations i and j, this function shouid hold:

dTi/dt = - dT;/dt = T (V; - V;)

where k = 1 if V; < V;, and k = j 4f V; > V;. If V; =

62
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V; the value of T, is immaterial (provided it is
finite) since V; - V; = 0.

At equilibrium, dT; /dt = dT;/dt = 9; that is to say,
the distribution of time is not changing. According to
this dynamic model, this may come about in two ways,
either or both of which may occur. 1In the first case,
V; = V;. This obtains in the usual matching found on
concurrent VI VI: there local response rates (P; and
% ) are equal, as are local reinforcement rates (R; and
Rj ), and so both V; = f(P, R{) and V; = f(p,, R;) must
be equal. On concurrent VR VR, with the requirement

for i less than that for j, V.

1

>V;, and T; will
increase until T, = 0. In this case equlibrium comes
about because of a time limitation and not because of
equality of local values. If lim V; = V; as T;~» O,

and for T,

5 >0, Vi > V;, then at equlibrium matching

would obtain and exclusive preference would be
exhibited. Thus at exclusive preference this model
says that matching may or may not obtain. Although the
steady-state outcomes may differ, a single dynamic
process appears sufficient to account for those
results.

The level of measurement appropriate to different
heights on the response surface is at least an ordinal

scale. On a single schedule, for example, pecints 'in

63
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the vicinity of a point of stability on the
reinforcement function are assumed to have less value
than the point of stability. In contemporary economics
this appears to be the level of measurement assumed to
be appropriate for the utility surface, which is quite
similar to the present response surface (Mansfield,
1975). A possible means of gaining an interval scale
might derive from the use of conjoint measurement,
either additive or polynomial (Krantz, Luce, Suppes, &
Tversky, 1971). However, in order to do so it would be
necessary to .assume that value can be represented as an
additive or polynomial function of response rate and
reinforcement rate. It is not feasible to evaluate
this possibility with data presently available.

A second possibility is suggested by Lange (1934) in
a discussion of the level of measurement appropriate
for the utility surface. If it is just assumed that
any pair of commodities may be ordered in terms of
preference (allowing indifference), an ordinal scale is
determined. If, in addition, a person can order
differences between pairs of commodities, the following
constructiocn may be employed to give an interval scale
of measurement. Given commodities a and b, with b
preferred to a, find a third commodity ¢ such that the

difference from a to b is the same as that from b to c.
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This difference can then be taken‘as our unit of
measurement. Lange points out that while the
preference ordering is derived from behavioral data,
the ordering of differences must come from
introspection.

In the case of the response surface, if a dynamic
model of the sort suggested above holds, this opens the
theoretical possibility of obtaining behavioral data
about the ordering of differences in value between
situations. This possibility exists because we are
assuming that a difference in value does not lead to an
instantaneous change in performance, but a change in
performance whose rate is some function of that
difference in values. Thus if it were possible to
measure that rate, an inference might be made as to the

difference in value.
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Implications for the concept of reinforcement

Finally, we may consider some of the implications of
this approach for the concept of reinforcement;
specifically, the present approach allows one to view
predictions of Premack from another point of view. The
view of reinforcement usually cited, deriving from
Thorndike (1911) and Skinner (1938), states that a
reinforcer is a stimulus which, if it follows some
behavior, will increase the frequency of that behavior.
It can immediately be seen that such an effect is one
of three possibilities. The second is that a stimulus
may produce no change; these are called neutral
stimuli. - The third possibility is that a stimulus may
decrease behavior; such stimuli are called punishers.

This scheme was shown to have certain limitations by
Premack (1959), who found that one response with a
higher probability of occurring could reinforce one
with a lower probability, but the latter could not
reinforce the former. In general, what would earlier
be tinought of as a stimulus becomes for Premack a
response: instead of food, we consider eating. We may
speak of events which make contact with the animal, and
not lose what is meant in either case. Premack points
out that his position eliminates the possibility of

dividing events into reinforcers, neutral stimuli; and
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punishers. Rather, the status of a contingent event
depends upon its relation to the instrumental event.
Premack. s position requires that events be compared on
a common scale; otherwise not every two events would be
comparable in terms of probability. He first suggested
using intact chains of behavior as a common unit
(called smallesﬁ possible units); later (1965) he
suggested that the amount of time an activity is
engaged in is a valid measure of its probability. Thus
if more time is spent in one activity than another, the
first should. reinforce the second, but not the other
way around. Although it does not follow from his
position, he has found that, in order for reinforcement
to occur, the contingent event must be occurring less
than in baseline. For example, if a rat engages in

running and drinking ab lib, one response may occur

more than the other. In spite of the fact that on
numerous instances the more probable response follows
the less probable, no reinforcement (i.e., increase in
the less probable response) occurs.

We may illustrate what Premack is suggesting by
means of a surface with constraints. In Figure 22a we
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Figure 22 about here
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Figure 22. (a): Hypothetical point representing base
rates of activity x and activity y. (b): Inequality
constraint enforcing at least as much of y as x. (e¢):
Range of activity as predicted by Premack under this
constraint. (d): Point predicted by Premack under
inequality constraint enforcing four times as much of x as

of y.



- I.lllllllln

J

A s |

1 -

A asialLdY

ACTIVITY X



Optimization

see a point representing the amount of time spent on
two activities, x and y; x is two times as probable as
Y. Suppose we make x contingent on y, one unit of x
contingent on one unit of y. This is equivalent to an
inequality constraint: the animal may move to any point
on or above the diagonal (Figure 22b). Premack says
that the animal will move to a point above the line y =
1: this corresponds to the lower probability behavior
being reinforced. Assuming the animal stays on the
constraint, Premack says behavior will fall somewhere
above y = 1 and below y = 2 (Figure 22¢).

On the other hand, the situation of y being
contingent on x is iliustrated in Figure 22d. 1In this
particular case, the animal may go anywhere on or below
the function y = x/4. If the animal stays on the
functioh, noqchange in x buts him at the point x = 2, ¥y
= «5:

By translating Premack’s position into these terms,
it appears that while reasonable, what he has said does
not make strong predictions. Furthermore, one finds no
statement in regard to how greater formal rigor could
be incorporated into this position. On the other hand,
Premack is certainly responsible for having closely
scrutinized the concept of reinforcement.

Premack (1971) makes an attempt to deal with the
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observation that some behaviors occur seldom but, when
they occur, have high probability; other behaviors
occur mere frequently but with lower probability when
they do. This leads him to suggest that it is

momentary probability that determines what behavior

will reinforce what. Such information can be lost if
only average probabilities are considered. This
strategy makes prediction less straightforward, for an
outcome can only be predicted by knowing future
momentary probabilities.

Timberlake and Allison (1974) take a slightly
different view, which they term an adaptive model of
performance. Given two responses, x and y, one first
determines base rates by allowing free access to these
events simultaneously. If the animal is then
constrained so that by engaging in the base rate of x
it can only engage in less than the base rate of y, and
if engaging in more than the base rate of x will allow
it to engage in more of y than otherwise, then x will
be reinforced. It does not matter whether x or y had
higher probability to begin with; deprivation of either
allows for the possibility of reinforcement of the
other. Further, the instrumental event will not
increase above the point at which the contingent event

is occurring at baseline level, but it may not reach
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that high.

Suppose, as in Figure 23a, an animal engages in x
twice as much as y. If we now constrain the animal so
that engaging in one unit of y is contingent on
engaging in four units of x, only by engaging in eight
units of x can the baseline of two units of y be

W T e S e S e W S

Figure 23 about here
obtained. As suggested by Figure 23b, they predict the
animal will go somewhere along the function, between x
= 4 and x = 8. They predict the same outcome as
Premack %f a higher probability response is contingent
on a lower probability response. Timberlake and
Allison mention that it is not necessary to measure the
two behaviors on a common scale. This reduces the
number of possibly arbitrary assumptons that must be
made. They, as well as Premack, discuss no systematic
way of predicting where on some constraint an animal
will go.

We thus have three views of reinforcement that have
been discussed. 1In the first, reinforcement occurs
when some behavior is followed by a reinforcing
stimulus. In the second, reinforcement occurs when a

lower probability response is followed by a higher

70



Figure 23. (a): Hypothetical amounts of activities x
and y. (b): Range predicted by Timberlake and Allison

under the inequality constraint shown.
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probability response. In the third, reinforcement
occurs if an increase in one response allows a second
response, occurring below baseline, tc approach its
baseline level.

Within the general point of view being developed
here, we make no assumptions about what events
correspond to the coordinates of our space. Suppose an
animal is allowed to engage in two events, x and y, at
baseline rates (Figure 24a). We may hypothesize that

S e S S S G S -

Figure 24 about here
by doing so it is thereby maximizing value (at least
locally). Thus other points in the vicinity should
have less value associated with them, and we may
nypothesize the existence of level curves. In Figure
24b we see possible level curves, in this case strictly
convex.

Given the existence of such curves, predictions in
the presence of ccnstraints become straightforward:
movement away from a point only occurs to the extent
that value increases. Consider the constraint in
Figure 2U4c. Here, both x and y have increased. Such a

situation could arise as follows: baseline rates of

running and drinking result in x of running and y of




Figure 24. (a): Hypothetical data point representing
base rates of running and drinking. (b): Hypothetical
contours that would give rise to behavior observed in
(a). (e): Under the constraint shown, behavior should
move to point b. Timberlake and Allison do not

discriminate between points a and b.
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drinking. HNow, the running wheel is forced to turn
twice as much as before; if drinking occurs it will
reduce the amount of running necessary. It is
reasonable to think that both drinking and running will
end up at higher than baseline rates, since either that
must occur or else one of them must be very much above
baseline. This goes against predictions of Premack,
for, from his point of view, both responses have been
reinforced, not just the one with the lower probability
in baseline. Suppose the animal starts out at point a.
Timberlake and Allison ‘cannot account for a move to b,
because nc deprivation exists.

Interaction effects could also give rise to
interesting possibilities. Suppose a subject responds
at a in Figure 25a, and suppose further that y
interacts with x in such a way that an increase in y

will make the optimal x value greater. For example, x

might be drinking water and y licking salt. Contours

could be oriented as in Figure 25b, where a constraint ‘
Figure 25 about here

is shown that enforces equal amounts of x and y. Here,

both x and y could be increased above baselines.

Neither Premack nor Timberlake and Allison are prepared



Figure 25. (a): Hypothetical data point. (b):
Hypothetical contours that might result if activity y

potentiated activity x.
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to deal with such cases.

The problem raised by infrequent behaviors with high
probability when they occur may be dealt with as
follows. Suppose we observe a person to spend one hour
a day eating, and ten hours a day chewing gum; further,
that any deviation from that amount of eating is
aversive, but little change in value results from large
changes in gum chewing. In Figure 26a we see possible

relations between value and amount that would

- ———— - —

correspond to these cases. Assuming no interactions,
level curves would be similar to those in Figure 26b.
We see that a constraint that forces these two events
to occur in equal amounts changes one greatly and the
other a small amount. The simplest sort of interaction
would probably corient the axes of the contours (viewing
them as elipses) at some other angle.

The process of reinforcement is-usually said to
occur if some response increases above its baseline
level, or operant level. If we cconsider what happens
from the present point of view, we see that without
constraints the animal will go to some point in the

space, and if constrained from doing so it will go to




Figure 26. (a): Hypothetical functions showing value
as a function of amount for two activities. (b):
Approximate contours that would result from functions in

(a), and behavior maintained by a constraint.
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some other point. But in either case the same process
is involved: movements toward higher value are
retaineq while those toward lower value are not.
Reinforcement does not appear unique to the constrained
situation, but occurs in any situation.

By identifying value with reinforcement, we see that
maximizing value is equivalent to doing what is most
reinforcing out of the sampled alternatives. 1If one
behavior is more reinforcing than another, we can only
identify it as so because of an increase in the ratio
of that behavior to the other. 1t may appear that the
present account suffers from circularity, which would
imply that it cannot be disconfirmed (cf, Popper,
1959). However, we need to distinguish between
specific hypetheses put forth, such as monotonicity of
the response-surface, and the more general approach
being advocated. The specific hypotheses discussed are
certainly susceptible to disconfirmaticn, so we need
deal only with the general approach. That approach is
based cn the assumption that how an organism
distributes its time between two or more alternatives
depends in a lawful and orderly manner on the
characteristics of those alternatives. While this
assumption may never be disconfirmed, it is also likely

few people would reject it for this reason.
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