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chology, traditional stage theory has been criticized for not showing that stages exist
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(Kohlberg & Armon, 1984; Gibbs, 1977, 1979; Broughton, 1984). To address this
issue, Commons and Richards (1984a,b) argued that a successful developmental
theory should address two conceptually different issues: (1) the hierarchical com-
plexity of the task to be solved and (2) the psychology, sociology, and anthropology
of such task performance and how that performance develops. The notion of the
hierarchical complexity of tasks, introduced here, formalizes the key notions implicit
in most stage theories, presenting them as axioms and theorems. The hierarchical
complexity of tasks has itself been grounded in mathematical models (Coombs,
Dawes, & Tversky, 1970) and information science (Lindsay & Norman, 1977). The
resultant definition of stage is that it is the highest order of hierarchical complexity
on which there is successful task performance. In addition to providing an analytic
solution to the issue of what are developmental stages, the theory of hierarchical
complexity presented here allows for the possibility within science of scaling the
complexity in a form more akin to intelligence.  1998 Academic Press

Key Words: Existence; development; stages; hierarchical; complexity; task-
analysis; analytic; sequence; cognitive; Piaget.

The major purpose of this paper is to introduce the notion of the order of
hierarchical complexity of tasks. Hierarchical complexity describes a form
of information that is orthogonal to the traditional information theory form,
in which information is coded as bits that increase quantitatively with more
information. Our proposal provides an analytic measure of the power re-
quired to complete a task or solve a problem.

This conceptualization establishes the notion of hierarchical complexity
as a new branch of information science with broad implications both within
and beyond the confines of developmental psychology. Because hierarchical
complexity is such an ever-present dimension of tasks, taking it into account
will make certain behavioral science issues more coherent and our analysis
of them more powerful and effective. This is because every task has an order
of complexity associated with it. This means that within behavioral science
every experimental task, every clinical test, developmental task, survey item,
or statement by a person can be characterized in terms of its hierarchical
complexity. Other tasks and activities can be similarly classified; for exam-
ple, jobs and activities, political systems, or economic systems. Measures
that ignore the hierarchical complexity of tasks collapse the performances
obtained in ways that obscure the factor(s) that are actually causing the vari-
ability in behavior. For example, one speculation is that as individuals in
given societies get more educated, class status is due less to education per
se and more to parental status, income, and occupation. This might be be-
cause the hierarchical complexity of the tasks a person solves determines
income now more than education. Few can meet the highest demands or can
solve the most hierarchically complex tasks; quite a few can meet only the
minimal demands. Outside the behavioral sciences, the notion of hierarchical
complexity may turn out to be useful. For example, it may provide a way
to organize the functions of large numbers of processes within the biological
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sciences, evolutionary data, or to measure the power of computers, robots,
or programs within the computational sciences.

We first present the historical background of stage within developmental
psychology. We will discuss why hierarchical complexity is useful within
developmental psychology. The first problem that it addresses is the exis-
tence of developmental stages. The traditional notion of developmental
stages has been hopelessly mired in empirical problems that have led to its
abandonment by many as a coherent measure (see discussions by Brainerd,
1978, and Broughton, 1984). Here, we replace the old, empirically based,
idea of developing mental structures with an analytic notion—that of
the hierarchical complexity of tasks. We demonstrate further that the identi-
cal measures of hierarchical complexity underlie development in any do-
main.

The difficulty of empirically demonstrating the existence of stage has a
long history in developmental research. Traditional stage theory has been
criticized for not showing that stages exist as more than ad hoc descriptions
of sequential changes in human behavior (Kohlberg & Armon, 1984; Gibbs,
1977, 1979; Broughton, 1984). Fischer, Hand, and Russell (1984), along with
Case (1985), have demonstrated the problems of confounding developmental
sequence of behavior with traditional notions of stage in the quest for empiri-
cal evidence. Sequential acquisition of behavior can clearly be demonstrated
empirically. A precise and defensible notion of stage has proven more elu-
sive. An empirical test of some notion of stage, as Campbell and Richie
(1983) have made clear, would involve a demonstration that qualitative dif-
ferences exist between one stage and the next one. We refer to such qualita-
tive differences as discreteness or gappiness. Such flawed demonstrations
have almost always been empirical. Our notion of ‘‘stage’’ introduced here
is based on hierarchical complexity of tasks and then on performance on
those tasks. Our notion does not require in any way abrupt emergence of
the new performance and abrupt displacement or disappearance of the old
performance. Maybe intervention studies could be used to show this dis-
creteness, but even these kinds of studies cannot prove the existence of some
form of empirically defined stage (Commons & Calneck, 1984). The problem
is like the one of ‘‘all or none learning.’’ If one makes measurements contin-
uously, then one may find continuity in acquisition—or one may find periods
of no change and apparent instantaneous change. Whether the change ap-
pears discontinuous depends upon how often one makes the measurement.
This position is consistent with many of the newer transition models in which
change may take place without the behavioral markers changing. Molenaar
and van der Maas (1994), and van der Maas (1992) and their collaborators
use mathematical models in an attempt to show how changes in an underly-
ing continuum could produce abrupt transitions. If one measures less often,
one sees jumps in performance or gaps between subject performance mea-
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sured at one time. If one measures more often one may see what appears
more like continuous acquisition. The current model deals with this problem
by uncoupling the measured or empirical performance from the two compo-
nents upon which the performance is based: the hierarchical complexity of
the task on the one hand and additional factors that influence performance
on the other.

Despite the difficulties associated with empirical accounts of a notion of
stage development, a post-Piagetian, purely analytic, basis for a notion of
stage has not yet been set forth. The aim of this paper is to do exactly that—
to demonstrate the existence of stage a priori. Because of its analytic nature,
the new notion of stage jettisons many of the assumptions of traditional stage
models. The General Model of Hierarchical Complexity (GMHC) introduced
here axiomatically defines what we suggest are the minimum necessary re-
quirements for the existence of developmental stages (for an earlier version,
see Commons & Richards, 1984a,b). The term ‘‘axiom’’ as used here refers
to foundational statements that are acceptable without proof and cannot fruit-
fully be defined further. To show that there are groups of tasks that satisfy
the axioms of the General Model of Hierarchical Complexity will demon-
strate the existence of stages and stage sequences analytically rather than
empirically.

THE GENERAL MODEL OF HIERARCHICAL COMPLEXITY

At this point, we will briefly present the main elements of the General
Model of Hierarchical Complexity. Note that the notion of hierarchical com-
plexity of tasks is grounded in mathematical models (Coombs, Dawes, &
Tversky, 1970) and information science (Lindsay & Norman, 1977). By dis-
tinguishing the notion of subject performance from that of task demand
(Desberg & Taylor, 1986; Taylor, 1903/1911) our model grounds the defini-
tion of developmental stage in the hierarchical complexity of tasks (see Frege
(1960, 1964) for application to mathematics).

Commons and Richards (1984a,b) emphasized that developmental theory
should address two conceptually different issues: (1) the hierarchical com-
plexity of the task to be solved and (2) the psychology, sociology, and anthro-
pology of how such task performance develops. The General Model of Hier-
archical Complexity uses the hierarchical complexity of tasks as the basis
for the definition of stage. An action is at a given stage when it successfully
completes a task of a given hierarchical order of complexity. Roughly, hier-
archical complexity refers to the number of nonrepeating recursions that the
coordinating actions must perform on a set of primary elements. Actions at
a higher order of hierarchical complexity: (a) are defined in terms of the
actions at the next lower order of hierarchical complexity; (b) organize and
transform the lower order actions; (c) produce organizations of lower order
actions that are new and not arbitrary and cannot be accomplished by those
lower order actions alone.
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In addition, the model describes discrete orders of hierarchy of task com-
plexity, sets forth a set of axioms that have to be satisfied in order to define
a stage sequence, and describes the necessary analytical properties of hierar-
chical orders. It does not posit detailed empirical forms of stages or the em-
pirical processes that cause stage change. Nor does the existence of stages
or of stage sequence shown through task analysis depend on any particular
psychological assumptions about stage or stage change (e.g., Case, 1985;
Fischer, 1980; Rosales & Baer, 1997). With tasks as the fundamental
elements to be measured, task analysis and the sequential ordering of tasks
are alone sufficient to form a ‘‘stage’’ sequence. From the order of hierarchi-
cal complexity of tasks, then, it is possible to derive an analytic measure of
stage.

This paper further describes the axiomatic criteria for a theory to be ac-
cepted as a stage theory. The fact and sufficiency of the current proposed
analytic model can increase accuracy and consistency in measuring stage of
development and will establish greater coherence in the field of develop-
mental theory, as well as in other areas of psychological study.

DEVELOPMENT OF STAGE THEORY

In order to establish what the minimum criteria are for a stage theory, we
will next briefly review earlier theories. Throughout most of this discussion
we will rely on the terms stage and stage sequence as those have been most
prevalent in the literature. Predating the line of research that has led to mod-
ern stage theories of human development, Frege (1879/1967) expounded a
stage sequence for a part of mathematics (see Table 1 for a more complete
version). Some of the earlier and most influential psychological theories of
human development (Binet, 1905/1916) used maturation over time as the
measure of behavioral change. While these theories focused on the duration
of time of developmental periods, some early theorists (Baldwin, 1906) tried
to categorize these periods into sequences or levels. Piaget (1937/1954) was
one of the first theorists to focus on patterns of behavioral change. Since his
formalized stages of development in children were published, stage theory
has been a dominant force within developmental theory. It is worth noting
that Piaget’s aim in introducing stages of performances on tasks was always
a taxonomic one. Stages were a means of classifying instances of thinking
shown while working on some tasks. In some of his writings in the 1920s,
Piaget would even classify different protocols from the same child (at the
same time of testing) at different stages. The taxonomic theme predates Pia-
get’s interest in developmental psychology, as presented carefully and con-
vincingly by Chapman (1988). The notion of hard stages, while in part ab-
stracted from Piaget, is directly articulated by Kohlberg, one of the first to
bring Piaget’s work to the attention of a large number of psychologists and
educators.

In the General Model of Hierarchical Complexity, the classic Kohlberg
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TABLE 1
Sequence of Orders of Complexity for Distributivity in Arithmetic

Order of
Hierarchical
Complexity Name Example

0 Calculatory Simple machine arithmetic on 0’s and 1’s
1 Sensory and motor Seeing circles, squares etc. or touching them.
2 Circular sensory–motor Reaching and grasping a circle or square.

* * * * *
s s s s s
■ ■ ■ ■ ■
■ / s )■ h

3 Sensory–motor A class of filled in squares may be made
4 Nominal That class may be named ‘‘Squares’’
5 Sentential The numbers 1, 2, 3, 4, 5 may be said in order
6 Preoperational The objects in row 5 may be counted. The last

count called 5, five, cinco etc.
7 Primary There are behaviors that act on such classes that

we call simple arithmetic operations
1 1 3 5 4
5 1 15 5 20
5(4) 5 20
5(3) 5 15
5(1) 5 5

8 Concrete There are behaviors that order the simple arith-
metic behaviors when multiplying a sum by
a number. Such distributive behaviors
require the simple arithmetic behavior as a
prerequisite, not just a precursor

5(1 1 3) 5 5(1) 1 5(3) 5 5 1 15 5 20
9 Abstract All the forms of five in the five rows in the

example are equivalent in value, x 5 5.
Forming class based on abstract feature

10 Formal The general left hand distributive relation is
x ∗ (y 1 z) 5 (x ∗ y) 1 (x ∗ z)

11 Systematic The right hand distribution law is not true for
numbers but is true for proportions and
sets.

x 1 (y ∗ z) 5 (x ∗ y) 1 (x ∗ z)
x < (y > z) 5 (x > y) < (x > z)

12 Metasystematic The system of propositional logic and elemen-
tary set theory are isomorphic

x & (y or z) 5 (x & y) or (x & z) Logic
⇔x > (y < z) 5 (x > y) < (x > z) Sets

T(False) ↔ φ Empty set
T(True) ↔ Ω Universal set
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and Armon (1984) interpretation of ‘‘Piagetian stage conditions’’ are met
and surpassed:

Condition 1. ‘‘Qualitative differences in stages’’ is shown in a General Model of
Hierarchical Complexity theorem—Qualitative differences are the
opposite of the Archimedean principle that between any two adjacent
ordinal numbers one can find another number.

Condition 2. ‘‘Invariant sequence’’ is shown by a theorem that follows from the
definitions.

Condition 3. ‘‘Structure-of-the-whole’’ is an axiom on tasks and is true every-
where in every domain and content.

Condition 4. ‘‘Stages are hierarchical integrations’’ is fulfilled by definition.

We add:

Condition 5. ‘‘Logic of each stage is explicit’’ so that the sequence of stages can
be tested analytically and new tasks can be classified systematically.
This condition is also met by the General Model of Hierarchical Com-
plexity.

We interpret these conditions as follows. In Condition 1, stages imply a
qualitative distinction in mathematical–logical properties of the tasks that
actions address. Those actions must still serve the same function at various
points in development. In Condition 2, stages form an invariant sequence
underlying the course of individual development. In Condition 3, these stages
exhibit the structure-of-the-whole property. The same stage of performance
is demanded across all domains. The phenomenon of unequal development
of performance in different domains is termed décalage—unequal perfor-
mance usually being the rule. People’s highest stage response characterizes
the most hierarchically complex task they solve. Their action corresponds
to the stage structure, which is the underlying organization of thought and
actions demanded by a task. Our model rejects décalage of ‘‘stage struc-
tures,’’ but not that of resulting performance. In Condition 4, the stage se-
quence is hierarchical, with the higher stages integrating and transforming
the lower.

Although of descriptive value, the Kohlberg and Armon (1984) ‘‘Pia-
getian’’ requirements conflate analytic and empirical criteria and thus have
not engendered a universally accepted formal analysis of stage. The General
Model of Hierarchical Complexity separates the ‘‘stage’’ properties for per-
formance from the tasks they address. The model also adds a fifth condition,
which is that the logic of each stage’s tasks must be explicit so that the
sequence of stages can be tested analytically and new tasks can be classified
systematically. This condition makes for an even ‘‘harder’’ stage model than
that required by the original four hard-stage conditions. Kohlberg and Armon
(1984) have noted the current disarray in the field and the resulting theories
of ‘‘soft’’ stages that fit some but not all of Piaget’s criteria.

Since Piaget’s death, few absolute and systematic accounts of stage have
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been devised, and the notion of stage itself has increasingly come under
attack (Brainerd, 1978; Broughton, 1984; Flavell, 1963). The diversity of
opinion as to the existence and measure of stage may be grouped into eight
broad categories, four of which reject and four of which accept some notion
of stage (for detailed reviews of some present stage theories, see for example
Alexander & Langer, 1990; Campbell & Bickhard, 1986).

First, the concept of stage has been rejected categorically by some behav-
ioral psychologists, most notably Skinner (Skinner & Vaughan, 1983). Be-
haviorists acknowledge that certain behaviors require the acquisition of oth-
ers in a chronological sense, but do not characterize these sequences in any
definitive way. The emergent property of stage (see Table 4) that Piaget
posits is particularly objectionable (Gewirtz, 1991). It assumes automatic
generativity rather than the contextualist notion that development is produced
by an interaction between actions and the surrounding context.

Second, there are those theorists focusing on maturation and IQ studies
(Binet & Simon, 1905/1916; Gesell & Amatruda, 1964; Terman & Merrill,
1937; Wexler, 1982) who work with the notion of sequence rather than stage.
To the behaviorists’ notion of chronological acquisition of behaviors, these
theorists add a requirement of certain ages for certain acquisitions, thereby
charting human development in a normative way that allows for averages
and deviancies.

Third, the work of those who characterize development in terms of pe-
riods, or ‘‘seasons’’ in human life, rejects the concept of stage. Among some
theorists, these periods are quite specialized (Erikson, 1959, 1978, 1982;
Levinson, 1986), although among others they form only three or four broad
superperiods (Alexander, Druker & Langer, 1990; Flavell, 1963). These pe-
riods are seen as sequenced but not hierarchical, and they are not organized
in any strictly logical way. Development in terms of periods may be charac-
terized more as socialization, whereas stage development is understood as
transformation.

Fourth, there are some who characterize development in terms of levels,
reserving the notion of stage to refer to coherence across domains within a
chronological period (Case, 1974, 1978, 1982; Fischer, 1980; Pascual-Leone,
1970, 1984). These theorists accept décalage just as Piaget (1972) did and
maintain that functioning at different levels in different domains is normal.
These levels are hierarchical, but they may lack a single reflective, generative
mechanism, which characterizes a stage. Depending on the level, different
kinds of coordinations may take place. These differences are often organized
into tiers containing four levels. The first level of one tier parallels the first
levels of other tiers. These levels fail to integrate and order lower stage ac-
tions in the same way irrespective of level. Additionally, Campbell and Bick-
hard (1986) claim that level theories (e.g., Case, 1978, 1982; Fischer, 1980)
do not build upon a reflective abstraction process of stage change that under-
lies the whole process of development. Thus, the levels tend to have the
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qualities of subroutines, so that one cannot be sure that these levels could not
be grouped into larger routines or subdivided even further (see Campbell &
Bickhard, 1992) because of the lack of inherent hierarchy.

Among those who do accept the notion of stage, a great deal of controversy
exists as to the nature and measurement of these stages. First among these
is the view, held by many stage theorists, that human beings move through
developmental stages, but that this development stops at the stage of formal
operations or shortly thereafter (Baltes, 1987). There is also diversity among
those who accept the notion of adult stages (for a discussion of these adult
stage theories, see Alexander & Langer, 1990; Kohlberg & Armon, 1984;
and Richards & Commons, 1990a,b). Piaget made a number of clear state-
ments about postformal operations. Campbell (personal communication) re-
ports Piaget’s statement that constructing axiomatic systems in geometry re-
quires a level of thinking that is a stage beyond formal operations: ‘‘one
could say that axiomatic schemas are to formal schemes what the latter are
to concrete operations’’ (Piaget, 1950).

A second perspective on stage theory can be identified with the work of
Loevinger, Kitchener, and King or others who work with stage in a statistical
sense and use psychometric methods to support their theories. Among these
theorists (Kitchener & King, 1990; Loevinger & Blasi, 1976; Rest, Turiel, &
Kohlberg, 1969) one does not find a clearly delineated a priori logic of stages
(Kohlberg, 1984; Kohlberg & Armon, 1984).

A third alternative is found in the work of Armon (1984), Dasen (1977),
Kegan (1982), Kohlberg (1984), and Selman (1980), who define clear stages,
but whose theories of stage self-admittedly lack a solid foundation in logic.

A fourth alternative has been to extend accounts with organized schemata
underlying each stage (Demetriou, 1990; Demetriou & Efklides, 1985; Pas-
cual-Leone, 1984). This fourth alternative has generated a structure and se-
quence of formal and postformal thought. Kohlberg (1990), Demetriou
(1990; Demetriou & Efklides, 1985), and Pascual-Leone (1984) all con-
ceived of two to three postformal stages and saw the necessity of logical
analysis to demonstrate and clarify these stages (Commons & Grotzer, 1990).
That is, Kohlberg, for example, said that stage is a logical truth and that
postformal stages existed (Kohlberg, 1990). This paper continues that one
aspect of Kohlberg’s work by formalizing that truth in an analytic model.

Finally, a few stage theorists have provided an analysis of the constraints
on stage, such as Campbell and Bickhard (1986, 1992). These theorists
clearly accept the notion of adult stages and provide a logical psychological
analysis of these stages. The difficulty with their model is that it neglects
the task analysis that would support their psychological claims. Campbell
and Bickhard are correct in rejecting task analysis as a sufficient solution to
the riddle of stages, but their logical analysis cannot tell us what representa-
tions are actually functioning in a given task. A levels account such as Camp-
bell and Bickhard’s does not equal a detailed account of representations.
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More empirical work on this model would shed light on some of the difficul-
ties of Campbell and Bickhard’s stages of reflective abstraction. For us, their
model seems to require too advanced a level of consciousness to account
sufficiently for the lower portions of the sequence. They argue (personal
communication) that, from the standpoint of the GMHC, Campbell and Bick-
hard’s Knowing Level 1 certainly appears to span too many stages. Nonethe-
less, they really did mean it when they said Knowing Level 1 starts at birth.
They ask, ‘‘What could precede interactive knowledge that is based on direct
interaction with the environment?’’ Table 2 shows some of the more com-
mon stage systems and their rough equivalencies.

ANTECEDENTS TO HIERARCHICAL TASK COMPLEXITY
AS THE BASIS FOR ANALYTIC STAGE

MEASURES OF BEHAVIOR

The purpose of this next section is to discuss some forerunners to the
present GMHC. Newell, Shaw, and Simon (1964) developed a general infor-
mation-processing theory. Using information-processing theory, Case
(1985), Pascual-Leone (1970, 1984), Scandura (1977), and Siegler (Siegler,
Liebert, & Liebert, 1973; Siegler, 1981) applied the role of task and task
analysis giving tasks a central role in the conception of stage. However, task
analysis (and information-processing models of stage) have not stated the a
priori analytic requirements of a hierarchical model of tasks. Historically,
two methods for determining the stage of subject performance (beginning
at the preschool level) on tasks in a particular domain have predominated
(Feldman, 1980). The first method is the observation/interview method that
uses a single task to test for multiple stages; the second method is the
observation/interview on a series of tasks, or task sequence method, where
each task is created to test just one stage. Both methods inductively infer
stage of performance on a single task in a domain.

With the observation/interview method (Inhelder & Piaget, 1958; Kegan,
1982; Kohlberg, 1981; Selman, 1980; Piaget, 1927/1930) the researcher pre-
sents the subject with a task and then interviews the subject to verify the
successful completion of the task. The observation/interview method was at
the heart of Piaget’s enterprise. From childrens’ performances, Piaget in-
ferred the stage at which they ‘‘constructed’’ the task. The subjects’ con-
structions of the task are the actions, both internal and external, that they
perform with respect to the task. To assign a stage to a subject’s perfor-
mance from an examination of the subject’s actions, one must assign a stage
to the task that one infers the subject has solved. When subjects fail to solve
the task at hand, the scoring scheme, in order to specify which lower stage
the subject’s solution represents, must indicate which, if any, lower stage
task that solution would successfully address. In the case of the observation/
interview method, the task that is being adequately solved is often inferred
by researchers.



ON THE EXISTENCE OF STAGE 247

T
A

B
L

E
2

R
el

at
io

ns
hi

ps
am

on
g

St
ag

e
M

od
el

s

Fi
sc

he
r

K
oh

lb
er

g,
A

rm
on

,
C

am
pb

el
l,

A
pp

ro
x.

G
M

H
C

T
ie

r
L

ev
el

Se
lm

an
C

as
e

B
ic

kh
ar

d
Pi

ag
et

ag
e

C
om

pu
to

ry
0

Se
ns

or
y

an
d

m
ot

or
1

0
2

1
2

1
0–

0.
5

C
ir

cu
la

r
se

ns
or

y-
m

ot
or

2
I

1
2

1/
0

3
a

0.
5

–1
Se

ns
or

y-
m

ot
or

3
2

0
4

b
1–

2
N

om
in

al
4

3
0/

1
5

Ia
2–

3
Se

nt
en

tia
l

5
3–

4
1

5–
6

Pr
eo

pe
ra

tio
na

l
6

II
4

1/
2

6
Ib

4–
6

Pr
im

ar
y

7
5

2
7

2
II

a
6–

8
C

on
cr

et
e

8
6

2/
3

8
II

b
8–

10
A

bs
tr

ac
t

9
II

I
7

3
9

3
II

Ia
10

Fo
rm

al
10

8
3/

4
10

II
Ib

12
Sy

st
em

at
ic

11
9

4
11

4
II

Ic
18

1
M

et
as

ys
te

m
at

ic
12

IV
10

5–
6

12
Po

st
fo

rm
al

20
1

Pa
ra

di
gm

at
ic

13
11

6
?

5
Po

st
fo

rm
al

?
C

ro
ss

-p
ar

ad
ig

m
at

ic
14

12
7

?
Po

st
fo

rm
al

?
15

no
n-

ex
is

te
nt

8
N

ot
ob

se
rv

ed
?



248 COMMONS ET AL.

With the task sequence method, on the other hand, the researcher deduc-
tively determines the stage of the task by analyzing a series of tasks in a
domain that the subject has successfully completed (Case, 1985; Com-
mons & Richards, 1984b; Fischer, 1980; and Siegler, 1978, 1981). In the
task sequence method, the task demands are deductively determined by the
researcher or theorist beforehand. If the subject performs the task success-
fully, one knows directly that the subject’s performance meets the require-
ments of that task. When one knows the task demands and the stage that
they require, it is not necessary to infer the stage of the subject’s construction
of a successfully completed task. Additionally, there is the requirement that
the subject be presented with an explicit sequence of tasks covering each of
the orders in the given domain (Fischer, 1980; Commons & Richards,
1984b). Otherwise one would only know whether the performance was at
least at the stage required by the task or below that stage without analysis
of the verbal responses.

In both cases, however, the subject response is quite determined by the
hierarchical complexity of tasks adequately solved. In the observation/inter-
view method, the subject’s solution to the task meets a set of task demands
characteristic of that stage. In the task sequence method, the stage of perfor-
mance required by the given order of task complexity has been determined
before the subject addresses the task. One problem with this method is that
it does not usually permit subjects to construct tasks on their own. The con-
struction problem increases the difficulty of a task. For example, Kuhn, Am-
sel, O’Loughlin et al. (1988) found that fewer college students were scored
as formal operational on self-constructed tasks than when college students
are administered formal operational tasks constructed by the researchers
(e.g., Commons, Miller, & Kuhn, 1982). In any case, an analysis of task
complexity is necessary for both methods in order to determine the stage of
any given solution to the task. Because performance always involves a partic-
ular task, descriptions of subject performance that lack task analysis are
bound to be incomplete at best and at worst erroneous.

An indication of where ‘‘stages’’ exist is essential to the construction of
an analytic measure of order of hierarchical complexity. It is not immediately
obvious, however, whether stages are supposed to be properties of people,
performances, tasks, interactions, or even the world at large. Many research-
ers consider stage to be an epistemological competence internal to a subject
that is separable from performance. Commons and Richards (1984b), how-
ever, claim that whether or not there is an internal epistemological compe-
tence, one can only assess the stage of response required by a given task.
Commons and Richards contend that what is measured is performance on a
task of analytically determined hierarchical complexity. The task may be
created at a given order of hierarchical complexity or inferred as the task
the participant addresses. There is no such thing as competence.

Observable interaction between the researcher and the participant is al-
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ways grounded in an ideal, the ideal here being hierarchical complexity of
task. To paraphrase Kant (1781/1965) from the Critique of Pure Reason,
observation without concepts is blind, and concepts without observation are
empty. According to the General Model of Hierarchical Complexity, there-
fore, stage is a property of subject behavior, or response. All behavior of a
participant has a stage with respect to the task. Specifically, stage character-
izes a subject response to the effective stimuli of given hierarchically ordered
task demands. The General Model of Hierarchical Complexity is constructed
entirely from the observer’s perspective. It consistently avoids referring to
the organism’s knowledge or perspective in its characterization of order of
complexity.

Hierarchical complexity is a mathematical concept. Most modern theories
are written in the language of mathematics to improve the definiteness of
statements and reduce excess meaning. Just as the truth value of mathemati-
cal equations is independent of any individual’s ability to perform them, so
the analytic notion of stage does not refer to actual participants’ performance.
The stage of response required by a task exists irrespective of how real people
perform on the task. Consider the expression, 1 1 1 5 2, with the numeric
symbols standing for quantities without reference to what these quantities are
of, or to people doing the task, or the objects added. The response required to
solve this addition problem is primary stage, regardless of whether actual
subjects meet the requirement (and solve the problem). Piaget referred to
this stage as early concrete operations. Here the stage refers only to a point
along a sequence, not some shared structure-of-the-whole.

TASK ANALYSIS

It is a fundamental assumption that tasks can be analyzed in terms of
the actions that they require for successful completion. More than one set
of actions may complete a task. A proof of the analysis is to carry out
the actions and see if the task is completed. These actions are called task-
required actions or task demands, or just demands. For example, a computer
might add the number 1 to the number 10, producing the number 11. Task,
by turn, is defined as some ‘‘ideal’’ set of actions that are performed on
some ideal set of objects. The task demands are the contingencies between
ideal behavior and stimuli in the situation. We define contingency very
broadly as a relationship between events (i.e., behaviors or responses) and
outcomes. The development of the fields of artificial intelligence and infor-
mation processing have made it possible to list the series of actions involved
in a given task. This type of protocol analysis illustrates that the logical
assembly of a given set of actions will result in the desired outcome
on a particular task. There is no task having an infinite number of actions
that a human being can perform in a finite period of time. Conversely,
there is a limit to how short a measurable action can be. This probably
makes it possible to analytically decompose most tasks that exist but maybe
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not all. At the heart of the model is the notion of hierarchical (vertical)
complexity—as opposed to nonhierarchical (horizontal) complexity. First
we review nonhierarchical complexity to clarify the difference between the
two forms of information processing.

HIERARCHICAL VERSUS NONHIERARCHICAL
COMPLEXITY OF TASKS

Information in tasks and their subtasks can be characterized by both hierar-
chical (vertical) and nonhierarchical (horizontal) complexity. Hierarchical
complexity is the order of hierarchical complexity of the task (Commons &
Richards, 1984a; Commons & Rodriguez, 1990, 1993). Nonhierarchical
complexity refers to the classical notion of complexity found in information
theory (Shannon & Weaver, 1949).

NONHIERARCHICAL COMPLEXITY

Here, for every yes–no question, there is by definition an answer con-
taining one bit of information. Each additional yes–no question adds another
bit of information. The amount of such information required to solve a task
determines its nonhierarchical complexity. For example, in determining
the amount of time a computer program requires to execute a program, the
number of bits yields an estimate. The measure of how many simple non-
recodable items an organism can work with at a given moment is given in
terms of the number of bits. Difficulty is often a property of nonhierarchical
complexity. Doing 20 addition problems is of the same order of complexity
as doing 1 addition problem, for example. The number of concatenation oper-
ations in 20 addition problems is the same as the number of concatenations
in a single addition problem. However, most subjects would agree that a task
that includes 20 problems is more difficult than one which includes only 2,
because it requires more work. Such nonhierarchical demands may include
high memory requirements, iterative problem solving involving time-con-
suming rote work, lack of familiarity with the elements of a problem, lack
of available representations and codes for those representations, and so on. It
is important to note the difference between hierarchical and nonhierarchical
complexity, because a subject could fail the most difficult order-three task,
but complete the simplest order-four task. This may lead to uncertainty or
ambiguity in scoring the performance: Can the subject really perform a prob-
lem with order four of hierarchical complexity in the domain in question?
In such a case, researchers should consider the nonhierarchical complexity
of the task and whether nonhierarchical task demands may have made the
order-three task especially difficult for this subject.

The number of bits of information needed to complete a task is described
in information theory. By definition, for every yes–no question embedded
in a task, there is an answer containing one bit of information. Take the
simplest situation, in which a yes/no question is transmitted. If one has one
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yes–no question, the answer (by definition) contains 1 bit of information
(n 5 1). To see this, consider that for two yes–no questions, there are 2 bits
of information, and there are 4 5 22 alternative answer patterns (yes–yes,
yes–no, no–yes, no–no). For three questions, there are 3 bits of information
and 8 5 23 alternatives. In any situation made up of a number of such yes–
no questions, the number of alternative answers can be generated by calculat-
ing 2n, where n is the number of bits. If there are n questions, each one
containing 1 bit of information, there are 2n alternative answers. The amount
of this type of information required by a problem is called the horizontal
complexity. Horizontal complexity may account for differences in difficulty
of tasks but not for differences in the order of hierarchical complexity.

HIERARCHICAL COMPLEXITY

In the model presented here we are concerned with hierarchical complex-
ity only, not horizontal complexity. For example, multiplying 3 3 (9 1 2)
requires a distributive action at the concrete stage of hierarchical complexity.
The distributive action is as follows: 3 3 (9 1 2) 5 (3 3 9) 1 (3 3 2) 5
27 1 6 5 33. That action coordinates (organizes) adding and multiplying
by uniquely organizing the order of those actions. The distributive action is
therefore one order more complex than the acts of adding and multiplying
alone. Although one could arrive at the same answer through simple addition,
performing both addition and multiplication in a coordinated manner facili-
tates greater effectiveness in problem-solving. The distributive action forms
a pattern out of the additive and multiplicative actions. Traditional informa-
tion processes in computers do not do pattern recognition and detection well
in general but simple distributivity might be recognized.

The Order of Hierarchical Complexity or just order of tasks is determined
by the number of nonrepeating recursions which constitute it. Recursion re-
fers to the process by which the output of the lower order actions forms the
input of the higher order actions. The order of hierarchical complexity of
task T is denoted C(T ) and defined as follows:

(1) For a simple task ti, C(ti) is 1.
(2) Otherwise, C(T) 5 C(T′) 1 1,

where C(T′) 5 max(C(T1, C(T2, . . . C(Tn )) for all Ti in T.

In parallel with the discussion about horizontal information theory, for every
additional coordination (organization of actions) there is one more order
(which is parallel to the notion of bits in horizontal information processing
theory). There are at least two actions from the next lowest stage coordinated,
so order number is n and the number of actions coordinated is 2n.

A simple task has complexity one, and all other tasks have complexity
one greater than the complexity of their highest task demand. Because grab-
bing an object requires glancing and touching, both simple tasks of complex-
ity one, the complexity of grabbing is the max (complexity of glancing, com-
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plexity of touching) plus one, which is two. The hierarchical complexity of
glancing is one, the hierarchical complexity of grabbing is two. The theory
of task analysis prohibits a task of order n from being a prerequisite to a
task of order less than n. Glancing can be an element of grabbing, but grab-
bing cannot be an element of glancing, although some tasks may overlap in
their demands, such as grabbing an object and hitting an object, which both
require glancing at an object. Every task (unless it is a simple task) therefore
contains a multitude of subtasks. This ‘‘nesting’’ of lower order tasks within
higher order tasks is called concatenation. Each new task-required action in
the hierarchy is one order more complex than the task-required actions upon
which it is built. Tasks are always more hierarchically complex than their
subtasks. In this task-complexity theory, for a task to be more hierarchically
complex than another, the new task must meet three requirements. Again,
the new task-required action must

(1) be defined in terms of the lower stage actions and
(2) coordinate the lower stage actions in a
(3) nonarbitrary way.

First, the very definition of a task-required behavior with a higher complexity
must depend on previously defined, task-required behavior of lower com-
plexity. Second, the higher complexity task-required actions must coordinate
the less complex actions. To coordinate actions is to specify the way a set
of actions fit together and interrelate. The coordination specifies the order
of the less complex actions. Third, the coordination must not be arbitrary.
Otherwise the coordination would be merely a chain of behaviors. The mean-
ing of the more complex task must be severely altered by any nonspecified
alteration in the coordination.

Through such task analysis, the hierarchical complexity of a task may be
determined. The hierarchical complexity of a task therefore refers to the
number of concatenation operations it contains. An order-three task has three
concatenation operations. A task of order three operates on a task of order
two and a task of order two operates on a task of order one (a simple task).
Figure 1 shows a sample task tree.

The present model allows comparisons of sequences of tasks across do-
mains, without invoking horizontal structure or making developmental syn-
chrony claims. There is no good taxonomy of collections of tasks. The Pia-
getians use the word domain, such as in the moral, or physical domain.
Campbell (personal communication) suggests the word field would be more
appropriate because it refers to the task side rather than performance side.
Although we use the term domain, which reflects the organism’s perspective,
because it is common, we use it to mean the external-perspective term field.
In ordering unrelated tasks, one starts with a set of related tasks. The related
task sequence should be large enough to contain examples of the entire se-
quence of orders of complexity. Finding tasks that span the whole sequence
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FIG. 1. Sample task tree.

is not difficult because a very large number of sequences are known. Also,
descriptions exist for each order of hierarchical complexity. To determine
the hierarchical complexity of a task from a new sequence, one follows the
same procedure as used to analyze the early task sequences. One finds some
complex versions of the task. One breaks down the task step by step. One
answers the question at each order of hierarchical complexity, what less com-
plex actions is the required task action ordering? One then tries to see if
there are intermediate actions.

TASK CHAINS

Behavior can be sequenced so that, to meet the requirements of the world,
some behaviors have to be executed before others. For example, in the pres-
ent, one has to press the elevator button before the elevator door opens. One
has to wait until the door is open before walking onto the elevator. This task
chain is ordered by steps that one can imagine could be eliminated. Someone
else could have pushed the button or a sensor could determine that you have
come up to the elevator. These actions are just predecessors of actions. They
go before, without being necessary to the following action. They are not
prerequisites in a hierarchical sequence. They come first but the order of
execution or acquisition could be altered.

In contrast to the above example, hierarchical task-chain sequences are
organized and this organization is not arbitrary. There are powerful implica-
tions for the nature of the ordering that hold for stacked neural nets (the
output of one group of neural nets feeding into another net—with feedback)
and animals. Usually lower order actions must be executed before it is possi-
ble to execute a higher order action. Again, a chain is a sequence of tasks
such that a task in the chain goes either before or after another task. In a
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hierarchical task chain, each action includes the task below or before it. A
task is higher on the chain if it requires another task in the chain to complete
it. The lowest task on the chain has no prerequisite in the chain, and the
highest task on the chain is not a prerequisite for any task on the chain. For
example, in order to count one must say numbers in sequence; in order to
say numbers in sequence one must be able to say numbers. Here, saying
numbers is the lowest task on the chain, and counting is the highest task on
the chain. Two tasks are called distinct just in case one is not the inverse or
identity of the other. Saying ‘‘one’’ and saying ‘‘one’’ a second time are
two instances of the same task. Not every action has an inverse, although
some actions have multiple inverses. For example, some problems in mathe-
matics have inverses that are comparable to an additive inverse, while others
have multiplicative inverses.

Two or more distinct actions will form a nonarbitrary organized chain if
the outcome of one depends upon the outcome of the other. This means that
the outcome of the first serves as the input for the second. The preceding
action is called a prerequisite action. Grabbing a pen depends on successfully
glancing at a pen and successfully touching a pen, so glancing at a pen and
touching a pen are prerequisite actions for grabbing a pen. A higher-order,
organizing action is necessary. An organizing action relates two or more
lower order tasks in a chain. Grabbing organizes glancing and touching.
Tasks whose chains intersect on some significant number (as defined by ex-
perimenters) of demands are said to fall within the same domain.

Two examples follow for clarification. The first analysis is of simple addi-
tion and begins at General Model of Hierarchical Complexity order 3—nom-
inal actions (Dromi, 1984). Table 1 shows the breakdown of addition and
distribution. Saying a number constitutes the simplest task, represented as
sn. The sentential stage action (General Model of Hierarchical Complexity
stage 2a) of saying numbers in sequence, constitutes an operation on two or
more nominal sn operations, ordering them in a nonarbitrary way. This is
written as S(si . . . sj). That is, the sentential action S acts on saying the
numbers i to j. Continuing this concatenation according to Table 2, the pri-
mary stage action of addition is A(C, C, C), or the primary act of adding
(A) operating on three ordered instances of counting (C).

The second example is taken from the wash problem (Commons, Miller, &
Kuhn, 1982), a task where subjects are asked to predict the outcome of wash-
ing a dirty cloth in one or more variable conditions (water temperature, type
of soap, etc.) based on previous outcomes for other cloths. The response at
the primary stage is like a law ‘‘a cloth washed in hot water comes out
clean.’’ Participants act as if they use the syllogism and make a correct pre-
diction. Table 3 gives the action breakdown. Note that the preoperational
step is not the consequence of the action, but merely the time ordering of
the events.
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IDEAL TASK PERFORMANCE

Researchers can construct tasks specifically to detect the stage of perfor-
mance of a subject in a given domain (Feldman, 1980). The only known
way to measure stage of performance is to observe a subject’s response to
specific tasks and then compare the actual performance to the possible ways
that the task could be accomplished. The method presented here rejects tradi-
tional notions of ‘‘correct’’ or ‘‘rational’’ task performance, preferring in-
stead the notion of the ideal task performance. Ideal task performance is the
successful completion of parameters or definitions of the problem. It differs
in each case according the task specified. For example, in basketball, if the
ball goes through the net, then it satisfies the ideal task performance. Ideal
performance conforms to the behavior of some ideal performer who maxi-
mizes performance on any given task. That is, the ideal performer produces
the most nearly complete and efficient performance on a task possible. But
there is no necessary connection between ideal performance and actual per-
formance in contrast to Chomsky’s doctrine of competence (e.g., Chomsky,
1957). A formal description of task requirements does not mean that partici-
pants use any part of the formal description to find correct solutions.

A particular participant’s order of performance is measured by the highest
order task that that subject performs adequately (i.e., relative to the ideal
task performance). We prefer to use the Rasch (1980) scaled measure as
discussed further on. When researchers measure actual subject performance
on tasks designed to measure stage in a particular domain, the scaled perfor-
mance is an empirical measure of stage. However, it is important to make
the distinction between the order of the hierarchical complexity of the ideal
task performance and the answer to the problem given by a task. If the task
in question is the addition problem 1 1 1, with symbolically written num-
bers, then the answer to the problem is 2. However, the outcome of the ideal
performance at the level of primary operations is the formula 1 1 1 5 2.
This is the evidence for the gapping between stages. There is no way to get
a paradigm of the ordering from within this task. The problem is equivalent
to proving the validity of the metaformula 1 1 1 5 2 when the problem
only allows the use of numbers as solutions.

DEFINITION OF ORDER OF PERFORMANCE

Order of performance on one task is not necessarily generalizable to other
tasks, even where the tasks share the same order of complexity and are found
in the same domain. Other task properties such as horizontal complexity can
account for that. Yet performance on tasks is the only basis for measuring
order. This problem is solved if researchers use more than one series of tasks.
In general, the hierarchical complexity of the task refers to the complexity
of the relationships that must be discriminated for ideal task performance.
Order of performance is thus an indication of the most complex discrimina-
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tion the subject makes on a given task under the conditions of the stimulus
situation. No claims are made as to cognitive structures of the brain or about
some overall stage of competence in the subject. Inferences can be drawn
about the ability of the subject to discriminate stageable signals based on
performance of tasks, however. By the definition of task complexity, there
can be no décalage in the hierarchical ranking of tasks. Tasks are rigidly
defined by their analytic breakdown, and domain remains an ambiguous clas-
sification superimposed on the rigorous task structure by experimenters.
Within subject performance, however, décalage is expected. Hence, this
method maintains the rigorous definition of a ‘‘hard’’ stage model, but with
the added subtlety of locating where these criteria fall.

SUMMARY OF AXIOMS AND THEOREMS

Order Axioms

Based on the preceding definitions, it is now possible to begin to define
a set of formal standards that must be satisfied to establish a consistent con-
cept of stage. Here we will briefly describe the axioms; a more extensive
description may be found in the Appendix. The notion of entity serves as a
point of departure. An entity is a set (or equivalence class) of tasks having
the same order of hierarchical complexity. Entities must satisfy these three
requirements for forming a sequence:

Axiom 1: Entities are nontrivial. Every entity must contain at least one
potentially detectable task (i.e., for any entity X, there exists some task x).

Axiom 2: Entities are connected. There is no logical indeterminancy. The
order of any entity is equal to, greater than, or less than the order of any other
entity, but not more than one of these relations holds for any two entities.

Axiom 3: Entities are transitive. If the order of any entity A is greater than
the order of some entity B, and the order of B is greater than some entity
C, then the order of A is greater than the order of C.

Entity Sequence Axioms

Axiom 4: Inclusivity. Entity n contains entity n-1 inclusively. Inclusivity
means that the higher order action can do all that the lower order actions
can do and more.

Axiom 5: Discreteness. The immediate successor of the entity of order n
is the entity of order n 1 1. The entities are discontinuous.

Relative Complexity of Actions Axioms

Axiom 6: Formation of actions from prerequisites. For one task-required
action to be higher in the chain than a second action, the second action must
be a prerequisite for the first action.

Axiom 7: Relational composition. A task-required action must organize
two or more distinct, earlier actions in the chain. (R. M. Dunn, personal
communication, January 26, 1986.)
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Axiom 8: Order of definition. The order of the organizing action and what
it acts upon in the chain is fixed.

THEOREMS RESULTING FROM THE AXIOMS

A system of orders of hierarchically tasks exists in any case in which all
of the above axioms are satisfied. A stage of performance system parallels
such a system. The following theorems are proofs derived from these axioms
and are demonstrated only informally.

Existence of Orders of Hierarchical Complexity and Resulting Stages

Theorem 1: Orders of hierarchical complexity exist. That collections of
actions can be sequenced into orders of hierarchical complexity rests upon
Axiom 6, which defines what is meant by qualitative difference. This dis-
creteness or ‘‘gap’’ axiom requires that there be no interpolated action be-
tween sets of new required acts and the sets of previous order acts. For exam-
ple, someone has performed an action (distribution) required by a distribution
task at the concrete order.

COROLLARY 1: STAGES EXIST. If orders of hierarchical complexity of tasks
exist, then there are actions that perform those tasks.

The discovery of one case in which the gap axiom and the other order of
hierarchical complexity axioms are satisfied is sufficient to logically demon-
strate the existence of stages and stage sequences.

Theorem 2: Postformal hierarchical tasks and performance exist. As hier-
archical complexity increases, the nature of the gap between each order of
complexity changes. The gap from the primary to the concrete order involves
only the coordination of addition and multiplication to form distributivity.
In later-order gaps, such as the one from the systematic to the metasystematic
order, at the metasystematic order, one has to create an entire metalanguage
and set of metarules in order to coordinate the operations of a previous sys-
tematic order (Commons & Richards, 1984a; The systematic order is also
called the consolidated formal operational stage; Kohlberg, 1990; Pascual-
Leone, 1984).

Making a deduction within a formal operational system requires formal
operations. Showing that something is true about a formal-operational sys-
tem requires systematic operations. Showing that something is true about a
systematic formal-operational system requires metasystematic operations.

Theorem 3: A linear order may exist only within a single domain, on single
sequences of tasks. Axioms 4 through 7 are not so restrictive as to allow for
this lattice structure, but are restrictive enough to require linear sequences
within a single task sequence.

This result can be stated as follows. When one sequence of task perfor-
mances in time is projected onto another sequence of task performances, the
combined sequences do not necessarily form a linear order. The task se-
quences may have to be from the same domain, and the same subdomain.
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Theorem 4. There is only one sequence of orders of complexity in all
domains. The order numbers describe the same complexity of task-required
actions irrespective of domain. Thus one can map any developmental se-
quence onto any other. This result does not imply synchronous development.
Whereas the stage numbers may be the same, the stages of performance may
develop at different times.

From an analytic perspective, the task requirements are constant and un-
varying for different individuals regardless of how the subject feels about
the task. The order complexity of each task within a sequence of tasks can
be directly compared to the order of complexity for another set of tasks. The
non-order of complexity aspects of tasks only makes it more difficult to apply
Axioms 8 through 10.

Theorem 5. Hierarchical complexity is a linear, ordinal scale. The scale
of order of hierarchical complexity maps into the positive and negative inte-
gers and the admissible transformations are of the form mx 1 n, where m
is a positive integer and n is any integer. So if x is an integer, so is the
transformed mx 1 n. Hierarchical complexity forms a linear ordinal scale,
which is a new type of measure. It has the following properties.

Oi are ordinal numbers, Oi e O.

They are linear:

Oj 5 mOi 1 b,

where m and b are ordinal numbers, m e O, b e O.
PROOF: By Axiom x, each action y coordinates at least two lower stage

actions. The orders of hierarchical complexity increase in number of actions
by at least twofold for every recursion. The order, O, is greater than or equal
to 2o, the Oth power of 2. Such powers have the linear property y 5 mx 1
b. In this case y 5 Oj, x 5 Oi. Hence the orders of hierarchical complexity
have the linear property.

We have made some scaled measurements of stage of items and stage of
respondent answers (Dawson, Goodheart, Draney, Wilson, & Commons, in
press). We used Rasch Analysis (1980), which jointly minimizes errors for
both items and respondents. What was interesting about the results is they
showed the items of a given order of hierarchical complexity all clustered
around the corresponding stage number and were roughly equally spaced.

Theorem 6. Measures of performance. Whereas the gaps between orders
of the complexity of tasks are discrete, measurement is continuous. Each
discrete performance on a given stage task (actual or inferred) either succeeds
(1) or fails (0).

CONCLUSION

Removing any axiom from the above model leaves orders of hierarchal
complexity (and therefore stage of performance) undefined. Adding more
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axioms would either reduce the generality of hierarchical complexity unnec-
essarily or make the axioms inconsistent. No claim is made as to the unique-
ness of the axiom system. The General Model of Hierarchical Complexity
shows that because a single measuring system represents hierarchical com-
plexity, only one stage sequence underlies all domains of development. To
have more than one sequence, another measure of hierarchical complexity
would have to exist.1 All tasks have some complexity associated with them.
Thus, all tasks have stages associated with them. Because orders of complex-
ity require such large jumps in performance (Fischer et al., 1984) even
though development may be continuous (Acredolo, 1995; Brainerd, 1978), it
may appear as jumps or gaps (Commons & Calnek, 1984) on stage measures
(Dawson, Goodheart, Draney, Wilson, & Commons, in press; Rosales &
Baer, 1997).

Establishing an analytic measure of stage has many benefits for psychol-
ogy. First, by classifying task complexity analytically, such a model produces
measures that are independent of observation and of actual subject perfor-
mances. This leads to a greater degree of accuracy and consistency in stage
measurement. Second, because the model defines a single sequence underly-
ing all domains of development, it sets forth the core requirements of stages
in every domain (see Kohlberg & Armon, 1984). Although many stage re-
searchers posit more core requirements for stage, none require fewer. The
set given by this model may allow for a systematic presentation of the con-
sensus of theorists as to these core requirements. Indeed, the presence of a
definitional set of axioms even makes it possible to determine whether a
particular developmental theory also qualifies as a stage theory. For, ac-
cording to this model, any theory that fails to account for the hierarchical
complexity of task in the definition of development stage will by definition
fail to yield results that are accurate, or even significant and meaningful as
to order of developmental complexity.

Some doubt may remain as to whether there exists only one stage se-
quence. For example, if there were more than one way to perform a task,
would this lead to alternative orders (and hence disagreement) as to the
proper stage of a task and the true stage sequence? The answer, to a certain
extent, is ‘‘yes.’’ There will inevitably be some argument over the validity
of certain task analyses. The fact that the analysis can be done by no means
implies that it will be obvious or easy in all cases. It is possible to define
our stage sequence such that it is generated from the task analysis with the
shortest possible task chains, however. This will eliminate some ambiguity.
Additionally, it may be asked whether it is possible to know from a single
task tree that another tree will not differ, such that complexity two on a one-
task tree falls between complexity two and complexity three on another.

1 This does not imply the ‘‘structured whole’’ notion of Piaget.
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The model, however, defines tasks that have two concatenations as tasks of
complexity two, regardless of how difficult they may be to perform. ‘‘Falling
between complexities’’ is therefore not a possibility. The General Model of
Hierarchical Complexity, then, shows that, because a single measuring sys-
tem represents hierarchical complexity, only one stage sequence underlies
all domains of development. For more than one sequence, another measure
of hierarchical complexity would have to exist, although this by no means
implies the structure-of-the-whole notion of Piaget. Such an alternative mea-
sure has not been identified, however. Moreover, because every task is of a
certain order of hierarchical complexity, all tasks have a stage of perfor-
mance associated with the response that they require for optimal resolution.
Stage of performance on any given task will correspond to the order of hierar-
chical complexity of the task itself.

This model therefore answers some of the most fundamental questions
that are asked about stage theories. By theoretically presenting a method for
the analysis of tasks, and deriving an actual task chain, the model demon-
strates that such chains exist. It also shows that stage sequence is invariable
across all domains, because domain has been removed from the construction
of the task sequence and so has no implications for task complexity. Conse-
quently, task complexity remains unchanged regardless of how broadly or
narrowly domains are defined. Finally, the model offers an analytic model
of stage development, based upon a set of mathematically grounded axioms.
The axiomatic nature of the model entails that stages exist as more than ad
hoc descriptions of sequential changes in human behavior and formalizes
key notions implicit in most stage theories. As such it offers clarity and
consistency to the field of stage theory and to the study of human develop-
ment in general. It also lays the basis for a new form of computational com-
plexity compatible with neural networks.

APPENDIX

Order Axioms

Based on the preceding definitions, it is now possible to begin to define a set of formal
standards that must be satisfied to establish a consistent concept of hierarchal complexity and
resulting stage of performance. The notion of entity serves as a point of departure. An entity
is a set (or equivalence class) of tasks having the same order of hierarchical complexity.
Entities must satisfy these three requirements for forming a sequence:

Axiom 1: Entities are nontrivial. Every entity contains at least one task (i.e., for any entity
X, there exists some task x). This axiom insures that order of hierarchical complexities of
tasks and the corresponding stages of performance will refer to actions and elements in some
real domain. That is, these tasks must be potentially detectable. For example, in the laundry
causality problem, formal operations are used to correlate the relation between causal variables
of water temperature, bleach brand, booster color, and soap form and outcome variables of
clean and dirty; the set of variables is not empty.
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Axiom 2: Entities are connected. There is no logical indeterminacy. The order of any entity
is equal to, greater than, or less than the order of any other entity, but not more than one of
these relations holds for any two entities. That is, C(A) . C(B), C(A) , C(B), or C(A) 5
C(B). C(X) is the complexity of X. This axiom is necessary to show that orders of hierarchical
complexity and the resulting stages will be comparable and that every hierarchically ordered
task will belong to some order. For example, it can be determined in a causality problem
whether the successful correlation of several variables is at a higher or lower order of complex-
ity than the action of successfully isolating the variables themselves or whether it is at an
order of complexity equivalent to that isolation action. It follows from the definition of concate-
nation, then, that relations between variables are always higher, that is, more complex, than
the single variables that they contain as elements.

Axiom 3: Entities are transitive. If the order of any entity A is greater than the order of
some entity B, and the order of B is greater than some entity C, then the order of A is greater
than the order of C. That is, (x)[C(A) . C(B) and C(B) . C(C)] then (x)[C(A) . C(C)].
C(X) is the complexity of X. For example, isolating systematic causal relations is at higher
order of complexity than isolating simple causality, which is itself at a higher order than
identifying a single variable. Thus isolation of systematic causal relations necessarily demon-
strates a higher complexity than the identification of a single variable.

This numerical sequence of entities now takes the form of a hierarchy that satisfies some
of our stage criteria. Sequences of orders of hierarchical task complexity are sets of entities
that satisfy the sequence Axioms 4 and 5, in addition to the sequence Axioms 1 through 3.
Axiom 4 actually follows directly from the definitions of concatenation and task structures.

Sequence Axioms

Axiom 4: Inclusivity. Entity n contains entity n 2 1 inclusively. If some demands of entity
n do not belong to entity n 2 1, but all demands of entity n belong to entity n 1 1, then the
demands can be arranged in an inclusive order. Inclusivity means that higher-order of complex-
ity actions will be more powerful than lower order actions, in the sense that the higher order
of complexity action can do all that the lower order of complexity actions can do and more.
For example, the discovery of causal relations in the laundry problem is more powerful than
the simple awareness of the hot/cold water variable.

Axiom 5: Discreteness. The immediate successor of the entity of order n is the entity of
order n 1 1. This criterion makes the sequence of entities discontinuous and stage-like. In
the laundry problem, for example, between statements about the variables themselves and
statements about the relation between variables, no intermediate statement can be made.

Relative Complexity of Actions Axioms

To fill the requirements for a theory of hierarchical complexity and therefore a stage theory,
the following three axioms must be satisfied. These axioms define the meaning of one task
being of hierarchical complexity than another task.

Axiom 6: Formation of actions from prerequisites. For one task-required action to be higher
in the chain than a second action, the second action must be a prerequisite for the first action.
This axiom can also be illustrated by the laundry problem in which the recognition of variables
not only precedes the recognition of causality but is also necessary to it. That is, the recognition
of variables is a prerequisite for the recognition of causality.

Axiom 7: Relational composition. A task-required action must organize two or more distinct,
earlier actions in the chain (R. M. Dunn, personal communication, January 26, 1986). This
organization stands in contradistinction to a simple chain of actions at the same level, where
there are no prerequisites and hence no organization of predecessors.
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Axiom 8: Order of definition. The order of the organizing action and what it acts upon in
the chain is fixed. That is, the position of the organizing action in question in the chain relative
to the prerequisite actions cannot be rearranged in principle. Thus in the laundry problem, the
order of the outcome (clean) and the causal variable (hot water) cannot be reversed. In mathe-
matics, this axiom can be illustrated with the principle of distributivity, in which the functions
must be performed in a given order. This axiom insures that the order of the chain of hierarchi-
cal complexity of actions is not an arbitrarily defined sequence of events, as is the case in
some stage theories. There must not be any other possible organization at a fundamental level
without changing the definition of the final action.

Limit on the Number of Possible Orders and Stages

Any given task has a discrete number of measurable steps and a small number of observable
elements. The relational composition axiom requires that each organizing action coordinate
at least two of the n 2 1 components of an action, where n is the order of the organizing
action. For example, there are two actions organized by an order-two task, and an order-three
task organizes two of those. Order-three actions organize four lower order actions. Now, sup-
pose there were 36 orders and corresponding stages. Then an order-36 task would organize
235 (two to the thirty-fifth) sensory-motor actions, or over 34 billion actions. If each takes 1 s,
then this task would require nearly 10 million h to complete. Because most stimulus situations
contain more restrictive time constraints, and because human life itself is finite, the relational
composition axiom entails the existence of an upper limit on the number of possible stages.

Axioms That Have Not Been Included

(a) Sudden or abrupt emergence. Competencies occur all of a sudden, in an all-or-none
stage change. Reason for rejection: No empirical way to decide at this time (Commons &
Calnek, 1984; but see Fischer, Hand, & Russell, 1984; and Rosales & Baer, 1997, for a contrary
view).

(b) Operations within stages have certain logicomathematical properties. These are the
operations such as identity, negation, reciprocation, correlative transformations, and the mathe-
matical relations of complementarity, commutativity, associativity that are associated with
certain groups). Reason for rejection of the Inhelder and Piaget (1958) INRC group: Task
analysis and performance analysis show that these are not the operations demanded or used
by subjects at any order (Brainerd 1978; Commons, Richards & Kuhn, 1982; Ennis, 1978).
The same holds for lower stage logicomathematical properties.

(c) Closure. There is no completeness at any stage of any set of operations or actions or
assumptions other than those found in Euclidean Geometry and Simple Logic (see Campbell &
Bickhard, 1986, for critique of the significance Piaget places on closed structures such as the
INRC group).

(d) There is an ultimate order and corresponding stage. Reason for rejection: No evidence
can support this. Someone may discover a next stage (Habermas, Wednesday, October, 15,
1986, personal communication; Commons & Richards, 1984b). Kohlberg and Fischer have
indicated that there is an ultimate stage, although Piaget (see Chapman, 1988) has not agreed.

Psychological Assumptions That Were Not Included

(a) Ensemble d’ensemble (cross-domain structure). For Piaget, the doctrine of structures
d’ensemble (overarching structures) applies within domains, not across them. See Chapman
(1988). The strong evidence for this was that development takes place at the same rate in all
domains. Reason for rejection: A good deal of research (e.g., Kohlberg, 1984) finds horizontal
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décalage when non-stage task difficulty is not controlled. Weinreb and Brainerd (1975) find
nonsynchronous development to be pervasive.

(b) Earlier schemes drop out. Reason for rejection: Organisms use the lowest stage that
works satisfactorily because that requires least effort.

(c) There is no regression. Reason for rejection: Research showed (Denton & Krebs, 1990;
Krebs, Denton, Vermeulen, Carpendale, & Bush, 1991) that alcohol drinking events as well
as other events reduce stage.

(d) Operatory stages are universal, performance at the highest stages occurs everywhere.
Reason for rejection: Piaget (1972) accepted the evidence and dropped the claim that formal
operations were universal. Dasen (1977) indicated that formal operations tested with Inhelder’s
and Piaget’s (1958) tasks are not found in nonschooled cultures.

THEOREMS RESULTING FROM THE AXIOMS

A system of orders of hierarchical tasks exists in any case in which all of the above axioms
are satisfied. A stage of performance system parallels such a system. The following theorems
are proofs derived from these axioms and are demonstrated only informally.

Existence of Orders of Hierarchical Complexity and Resulting Stages

Theorem 1: Orders of hierarchical complexity exist. Any developmental sequence of tasks
can easily satisfy the first five axioms. The crux of the argument is that collections of tasks
can be sequenced into orders of hierarchical complexity. The results require that stage actions
may also be ordered. This argument rests upon Axiom 6, which defines what is meant by
qualitative difference. This discreteness or ‘‘gap’’ axiom requires that there be no interpolated
action between sets of new required order of acts and the sets of previous order of acts. Brainerd
(1978), among others, argues that Axiom 6 is false, because every action can be divided into
a series of smaller actions and that no ‘‘gap’’ between types of actions exists. Likewise, he
argues that every performance can be broken down into smaller performances.

The discovery of one case in which the gap axiom and the other order axioms are satisfied
is sufficient to logically demonstrate the existence of stages and stage sequences. Failure to
find one case would reject this existence theorem. The distributivity case is presented here as
a very clear-cut example. This example is generalized to the case with groups in the Appendix.
The case of distributivity shows how all of the axioms are necessary to explain the relationship
between two tasks at differing levels.

DISTRIBUTIVITY. Distributive tasks require actions outside of the boundaries of simple addi-
tion and multiplication. In the task sequence generated by the General Model of Hierarchical
Complexity within the arithmetic domain, distributive tasks ( f3) on numbers require concrete2

order actions ( f3 belongs to Entity C), while addition (ei1) and multiplication (ej3) tasks on
numbers require primary-order actions (ei1, ej3 belong to Entity P) (see Table 1 and Com-
mons & Richards, 1984a). We will show that Entity C is higher than and separate from Entity
P and therefore forms part of an ordered task sequence. The gap between the complexity of
operations needed to perform addition and multiplication and the complexity of distributivity
thus demonstrates a gap in task order and resulting stage. In order to illustrate this theorem,
a numeric example is presented first, followed by a counterexample that does not meet the
conditions of the theorem.

2 The concrete operational stage requires the full coordination of primary operations on
numbers. We will show that distributivity on actions on numbers is such a coordination.
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NUMERIC EXAMPLE. Addition, action ei1, and multiplication, action ej3, are actions belonging
to Entity P that coordinate rational numbers not including 0 for the inverse of multiplication
(Elements). Distributivity, action a3, is an action that coordinates additive and multiplicative
acts. For example, let the set of elements be the natural numbers. Addition, action ei1, of 5
and 7 and of 10 1 14 is expressed as

(5 1 7) 5 12, (10 1 14) 5 24 (1)

Multiplication, action ej3, of 2 and 12, 2 and 5, and 2 and 7 is expressed as

(2 ∗ 12) 5 24, (2 ∗ 5) 5 10, (2 ∗ 7) 5 14. (2)

Numerical distributivity is shown as

2 ∗ (5 1 7) equals (2 ∗ 5) 1 (2 ∗ 7). (3)

The 2 that multiplies the sum is distributed across each element of the sum (action ej). What
was an operation in the previous order becomes an element for the new order.3

Below, it will be shown that the distributive act coordinates these additive and multiplicative
acts. The following expression represents each instance of multiplication or addition in a tri-
nary relation. In more abstract terms, the trinary relations in equations 2 and 3 can be written
as follows:

action ej(element a1, element a2, outcome a3) 5 e1(a1, a2, a3) → a1 o a2 5 a3, (4)

In this expression, o stands for one instance of either of the two classes of actions, addition
or multiplication. The subscripted a’s stand for the elements (numbers) to which one of these
actions is applied. In this expression it is critical to distinguish between a3 and the entire
expression which is Entity C:

a1 o a2 5 a3. (5)

There is a strong tendency to think of a3 as the stage product, rather than simply as the product
of the equation. While a3 is the outcome of applying addition to the elements, 1 and 2, and
is therefore the third term of the additive relation, it is not the stage product. The additive
relation 1 1 2 5 3 is the stage product. This product is the coordination of preoperational
stage products, namely, sequenced numbers. A stage product is an entire scheme of coordina-
tion from beginning to end, which includes the actions and elements from that particular stage
of coordination. It is this product that becomes an element for action at the next stage. The
fact of the stage product shows that Axioms 8 and 9 are satisfied and thus that a gap is formed
between stages when a new stage product is created. In the following example, by contrast,
a concatenation of actions that does not produce a new stage action is presented.

COUNTEREXAMPLE: ADDITION AS AN ITERATIVE ACTION. Instances of the trinary relation that
occur in an addition and multiplication table respectively are as follows:

e11(1, 2, 3) → 1 1 2 5 3.

e13(1, 2, 2) → 1 3 2 5 2.

These are but two instances of a large number of additive and multiplicative primary-stage
actions, or eij’s, each of which is a trinary relation.

Start with the set of elements E 5 {ai} 5 {1, 2, 3, 5, 6, 9} and two actions, addition and
multiplication, e1 and e3. Let the actions be applied to any pair of the elements {1, 2, 3, 6}.

3 The distributivity example can also use logic instead of integer arithmetic: Logically, the
statement, ‘‘A is true and (B is false or C is true)’’ is equivalent to the statement ‘‘(A is true
and B is false) or (A is true and C is true).’’
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The application of stage actions to stage elements eij(ai) yields the products

1. e1(ai) → e11(1, 2, 3) → 1 1 2 5 3

e21(1, 3, 4) → 1 1 3 5 4

e31(2, 3, 5) → 2 1 3 5 5

e41(3, 6, 9) → 3 1 6 5 9

2. e3(ai) → e13(1, 2, 2) → 1 3 2 5 2

e23(1, 3, 3) → 1 3 3 5 3

e33(2, 3, 6) → 2 3 3 5 6

e43(3, 3, 9) → 3 3 3 5 9

This is a subset of possible stage products for the simple application of actions to elements.
Other stage products are possible if actions are applied iteratively to elements. For example,
if addition is composed twice, more stage products become possible:

3. e1(e1(ai)) → e21(1,(e11(1, 2, 3)), 4) → 1 1 (1 1 2)

5 1 1 (3)

5 4

→ e31(2,(e11 (1, 2, 3)), 5) etc.

This is an example of nonhierarchical composition because any e1 could be directly applied
to the numbers. The order of application does not matter. There is no coordination of operations
or relations, other than the repetition of the e1. These compositions are not at the concrete-
operational stage because all of the actions within the composition are at the primary-opera-
tional stage and could be directly applied to the numbers.

Organization of Routines Is Not Arbitrary

For a composition of actions to be at a higher order than the actions being composed, an
action must directly apply only to the actions of the previous order and not directly to elements
of those actions. An example of a hierarchical composition of the actions defined above (e11

through e43) would be an action, f13, that organizes multiplication and addition distributively.
Distribution poses the problem of how to interpret multiplication on addition of numbers. The
subject does not know whether to begin with addition or multiplication. If addition is done
first, then the problem is to know what to multiply. If multiplication is done first, the problem
is to know what number(s) needs to be multiplied. This problem can be shown with the exam-
ple of multiplying the sum of 1 and 2. While it may seem obvious what the correct procedure
is, it is not obvious to the beginning concrete-operational thinker. The concatenation of two
actions, multiplying and adding,

f13(e3, e1(ai ), e1(e3(aj)))

must be worked out in terms of actual cases. In the following, the more general expression
of distribution is given and then converted into the specific terms in which it would be worked
out at the concrete-operational stage;

4. f13(e3 , e1(ai ), e1(e3(aj))) →

f13(3,(e1 1 (1, 2, 3,)), [e4p (e23(1, 3, 3), e33 (2, 3, 6), 9)])
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This complex expression is just a form of a trinary relation, f3(a, b, c ), where f3 is multiplica-
tion (on sums). This relation can be thought of as the conventional expression a 3 b 5 c.
Each letter is equal to

f13(a, b, c) → a 3 b 5 c.

This is the operation of multiplication over the three elements

a 5 3. The number 3 is a primary-operational
hierarchical complexity element.

b 5 the trinary relation e11 (1, 2, 3) → 1 1 2 5 3.

c 5 the complex trinary relation, [e41 (e23 (1, 3, 3), e33 (2, 3, 6), 9)],

which has the form e41 (r, s, t) → r 1 s 5 t, where

r 5 e23 (1, 3, 3) → 1 3 3 5 3

s 5 e33 (2, 3, 6) → 2 3 3 5 6

t 5 9.

Thus, r 1 s 5 t, or 9, is the sum of 1 times 3 and 2 times 3. Expression 4 may have r, s,
and t substituted into it:

4a. f13 (3, e1 1 (1, 2, 3,), [e41 (e23 (1, 3, 3), e33 (2, 3, 6), 9)]) →

4b. f13 (a, b, c) 5 f13 (a, b, e41 (r, s, t)) →

3 3 (1 1 2) 5 (1 3 3) 1 (2 3 3) 5 9.
The most critical aspect of this discussion has been the demonstration that very Entity C

is situated at the successor stage of Entity P. According to Axiom 7, if f13 is at a higher level
than e1(ai) and e3(ai), then this succession will be true. Acting on and organizing elements
and products from the previous stage will meet our definition of how hierarchical composition
generates an act at a successor stage.

First, from the expression f13(a, b, c), it was shown that f13, which belongs to Entity C,
was not directly acting upon the elements of the actions of Entity P alone. Of the three elements
organized by the trinary relation f13, only a 5 3 is an ai element of e1 from the Entity P. The
relation f13 acts on element b, which is a previous stage product defined by e11(1, 2, 3). The
f13 act cannot organize the predecessor stage elements 1 and 2 directly. The same is true for
element c, which is the product of the organization of two previous stage products, c 5
e41 (e23 (ai), e33 (aj ), ak). If these products were not defined, distribution would not be defined.
Axiom 8 is thus satisfied.

Second, because the f13 organizes the actions and their elements from Entity P, Axiom 9,
the relational composition axiom, is satisfied. The f13 acts upon prerequisite stage products
and coordinates them. More specifically, f13 acts on e11, e41, e23 and e33.

Third, the distribution act organizes specific acts of addition and multiplication into a given
order. It establishes an order relation across these acts and elements, as is specifically shown
in 4a. Actions must be performed from the innermost parentheses to the outermost. Because
the order defined by the coordination is invariant, Axiom 10 is satisfied.

The above example demonstrates how the operations at one order of hierarchical complexity
action become an outcome that is operated on by the new order hierarchical task’s operations.
This transformation of an action into an element is what Piaget meant by operations on opera-
tions.4 Because the operations at the previous stage are necessary to form elements that are

4 See Stein and Commons (1987, May) and Commons and Hallinan (1990) for the psychol-
ogy of reflection.
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operated on at a new stage, the order of the chain of elements and outcomes cannot be reversed.
This is why a stage sequence must be made up of discrete sets of actions and why the sequence
cannot be rearranged. (In other words, it cannot be imagined otherwise.) Through the distribu-
tivity property example we can see that there exists hierarchical composition of actions, which
results in a chain of entities forming a stage sequence. Thus the case of distributivity illustrates
the actual existence of a stage sequence.

Theorem 2: Postformal orders and resulting stages exist. As stages increase, the nature of
the gap between them changes. The gap from the primary to the concrete order of complexity
involves only the coordination of addition and multiplication to form distributivity. In the later
order of complexity gaps, such as the one from the systematic to the metasystematic order,
one has to create an entire metalanguage and set of metarules in order to coordinate the opera-
tions of a previous systematic order (Commons & Richards, 1984a; Kohlberg, 1990; and Pas-
cual-Leon, 1984, called this consolidate a formal-operational stage).

There is an unfillable gap between showing that things are true within an arithmetic system
and showing that things are true about such a system. This gap is demonstrated by Gödel’s
(1930/1931/1977) incompleteness theorem. In the proof that arithmetic is incomplete, Gödel’s
theorem also shows that axioms 8, 9, and 10 are satisfied. The axioms of arithmetic are not
sufficient to demonstrate all the truths about arithmetic. There is thus at least one truth that
can be found only with metalogic. A corollary of Gödel’s incompleteness theorem shows
that consistency is a property of a system not provable by methods formalized from within
that system (Luchins & Luchins, 1965). There are metamathematical propositions that are not
decidable within the axiom system. ‘‘The prefix meta has been used to identify a theory (or
a language) in which the object of study is itself a theory (or a language)’’ (p. 185). Complete-
ness is defined in terms of the axioms from within a system. Consistency must necessarily
be proved from outside that formal axiom system.

Axiom 8 states that for an action to be higher in the chain than another action, the first
action must be a prerequisite for the second. To prove consistency of a system, one must first
have the system defined in the chain. In Gödel’s proof, the systematic stage actions are repre-
sented by axioms within an axiom system. The metasystematic actions are the proof of consis-
tency of the axiom system. For an axiom system to be proven consistent or complete, Gödel’s
proof shows that the proof must be made from the next higher stage.

Axioms 9 and 10 are also satisfied by Gödel’s proof. The proof of consistency for an axiom
system necessarily makes the axiom system an element in a larger coordination of systems
(axiom 9). A consequence of this coordination is that the chain of organization of axioms,
axiom systems, and metamathematical systems is fixed and cannot be rearranged in princi-
ple (axiom 10).

Making a deduction within a formal operational system requires formal operations. Showing
that something is true about a formal-operational system requires systematic operations. Show-
ing that something is true about a systematic formal-operational system requires metasystem-
atic operations.

Order, Sequence, and Measure across Tasks and Domains

We propose that whereas hierarchical complexity is a linear structure, stage is a lattice
structure. A lattice structure is weaker than a linear structure in that it does not require cross-
domain synchrony. In a linear order, if a . b, b . c, then a . c. In a lattice, however, one
may have a . b, b . c, and a and c not comparable.

Theorem 3: A linear order of development may exist only within a single domain, on single
sequences of tasks. A linear order across domains and tasks is the algebraic, topological state-
ment of Piaget’s (1953) structures d’ensemble (structures of the whole). Domain refers to the
area of which a task is a member. Domain of a task can be conceptualized horizontally, while
stage can be conceptualized vertically and hierarchically. Domain may be viewed as hierarchi-
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cally organized in a reductionistic way, e.g., biology is based on chemistry which in turn
is based on physics. Nonsynchronous development is described by décalage in horizontal
organization. Feldman (1980) suggests in detail how to understand the organization of a do-
main. If the structure-of-the-whole holds, performance measured in two different domains
should show the same stage during the same time period (synchrony). Axioms 4 through 7
define a lattice structure. These axioms are not so restrictive as to force linear structure, but
are restrictive enough to require linear sequences within a single task sequence. Both Case’s
(1985) and Fischer’s (1980) models used to require synchrony, whereas their models as well
as Campbell & Bickhard’s (1986) model require only a lattice structure.

The relationship between sets of entities, and not sets of structures of the whole, is what
gives rise to stages. We have already shown existence of stage within a domain and task.

Theorem 4: There is only one sequence of hierarchical complexity of tasks in all domains.
DOMAIN AND STAGE. Historically, stage theories utilized the notion that tasks at different stages
within the same domain are ‘‘qualitatively different’’ (Kohlberg & Armon, 1984). Stage of
a task within a domain is determined by applying the last three axioms, 8 through 10. To
determine the order of hierarchical complexity of a task one must count the number of actions
in the hierarchy leading up to the task-required action. Each action in the hierarchy organizes
actions from the previous stage. Axioms 8 through 10 describe the conditions under which
an action will be vertically higher in stage than actions from the previous stage.

By checking repeatedly to see if an action requires a previous stage action which in turn
requires a previous stage action, one can determine the linear hierarchy for a single sequence
of tasks. The stage numbers describe the same complexity of task-required actions irrespective
of domain. Thus one can map any developmental sequence onto any other. This result does
not imply synchronous development.

Stage systems must propose a parallel set of stages or levels referred to here as circular,
sensory, nominal, preöperational, primary, concrete, abstract, formal, systematic, metasystem-
atic, cross-paradigmatic, and so on (see Table 2).5 This parallelism is exemplified by the work
of Fischer (1980), and Campbell and Bickhard (1986), and by the work of others including
Armon’s (1984) ethical development, Kohlberg’s (1984) moral development, and Loevinger’s
ego development (Loevinger & Blasi, 1976; Loevinger & Wessler, 1970) as systematized by
Cook-Greuter (1990) and Pascual-Leone’s (1984) organismic theory of life stages.

COROLLARY 1. COMMON MEASURES OF STAGE OF COMPLEXITY ACROSS DOMAINS EXIST: RE-

QUIREMENTS NEEDED TO ACCESS STAGE. The task requirements necessary to solve a problem
may have both hierarchical and stage and nonhierarchical properties. Let the hierarchical prop-
erties be a in Table 3. The nonstage properties b1, b2, and b3 only make it more difficult for
researchers to assess the stage of a task in a sequence. For example, asking people to add six
numbers, b2, in their head rather than two numbers, b1, increases nonstage demands. A subject

5 This table shows that it is possible to show precise correspondence between sequences
from different theories (adapted from Alexander, Druker, & Langer, 1990; Commons, Rich-
ards, & Armon, 1984; Sonnert & Commons, 1994). The following sequences have been modi-
fied by extending the stages and levels upward and filling in the nominal stage (Dromie,
1984). Fischer does not posit any levels beyond 10 (personal communication, March 28, 1988).
Kohlberg (e.g., Colby & Kohlberg, 1987a,b; Kohlberg, 1984, 1987) repeatedly reproduced a
table from Colby and Kohlberg’s unpublished 1975 paper. After the appearance of cognitive
developmental stages beyond formal operations, Kohlberg (1990) modified this correspon-
dence a number of times (Commons, Richards, & Armon, 1984, final table; Kohlberg, 1981,
1990; Schrader, 1987). Although he (personal communication, June 20, 1985) revised his
section of the final table for Commons, Richards, and Armon (1984), he never reviewed the
last changes on his own table (Kohlberg & Ryncarz, 1990). For a discussion of this issue,
see Commons and Grotzer (1990), Walker (1986), and Sonnert and Commons (1994).
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may also report that a lower stage task in an unfamiliar domain is harder than a higher stage
task in a familiar domain.

From Theorem 4, we know that the order of complexity of a task always exists for sequences
of tasks. When explanations of performance are part of the task performed, the minimal set
of actions may include remembering the actions, as well as naming and reflecting upon the
actions (King, Kitchener, Wood, & Davison, 1989; Kitchener & King, 1990; Tappan, 1990).
Again, additional nonstage requirements make a task more difficult than a task without them.
The additional requirements do not raise the order of the task but might raise the age of a
given subject at which a task is successfully completed. For example, requiring an action that
concatenates a set of actions in an ordered way has stage properties while requiring a certain
amount of material to be recalled does not directly have stage properties (see Axiom 4).

From an analytic perspective, the task requirements are constant and unvarying for different
individuals regardless of how the subject feels about the task. The complexity of stage for
each task within a sequence of tasks can be directly compared to the complexity of stage for
another set of tasks. The nonstage aspects of tasks only make it more difficult to apply axioms
8 through 10.

Concatenating Complexity

Theorem 5: Hierarchical complexity is a linear ordinal scale. The scale of order of hierar-
chical complexity maps into the positive and negative integers. The admissible transformations
are of the form mx 1 n, where m is a positive integer and n is any integer. So if x is an
integer, so is the transformed mx 1 n. Hierarchical complexity forms a linear ordinal scale.
This scale is the same type of number system that was used before fractions and negative
numbers were introduced into arithmetic. It has the properties

Oi are ordinal numbers, Oi e O

They are linear:

Oj 5 mOi 1 b, where m and b are ordinal numbers, m e O, b e O

PROOF: By Axiom x, each action y coordinates at least two lower stage actions. The orders
of hierarchical complexity increase in number of actions by at least twofold for every recursion.
The order, O, is greater or equal to 2O, the O th power of 2. Such powers have the linear property
y 5 mx 1 b. In this case y 5 Oj , x 5 Oi. Hence the orders of hierarchical complexity have
the linear property. We have created the Laundry and Balance Beam Series covering primary
through systematic order of complexity. We used a Rasch analysis (1980), which jointly mini-
mizes errors for both items and respondents. The results showed the items of a given order of
hierarchical complexity all clustered around the corresponding stage number and were roughly
equally spaced.

COROLLARY: VARYING THE OBJECT’S COMPLEXITY SHOULD HAVE THE SAME EFFECT AS

VARYING THE ACTION’S COMPLEXITY

How researchers and subjects represent actions, events, and situations in a task changes
with stage. By definition, stage increases as the complexity of the actions and discriminations
of relations increases. Our conception of stage is based on a stage-generating mechanism. The
number of times the mechanism can be applied is infinite, although researchers only understand
approximately 14 such applications. Task complexity is defined by the General Model of
Hierarchical Complexity metric discussed below (Commons & Richards, 1984a). Measuring
complexity allows one to differentiate the stage of a task from the difficulty of a task. Task
difficulty may be correlated with the age at which subjects complete tasks and with difficulty
of IQ test items.

Piaget recognized that what children reasoning at different stages considered rational dif-
fered from what adults considered rational. What constitutes rationality changes with stage.
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Piaget and Kohlberg posited that formal operational stage action reflected rational reasoning.
But Piaget also stated that making formal operational systems required reflections upon them.
Rational thought to Kohlberg is logical, consistent, reversible—having all the formal opera-
tional properties. The proof of the existence of postformal stages (Commons, Richards &
Kuhn, 1982) demonstrated that formal operations were not sound reasoning in many cases
and hence not rational. Because the sequence of stages is infinite, none of the postformal
forms of rationality are entirely adequate either; each new stage’s rationality resolves problems
with the former stage’s rationality. Thus how researchers represent a task and the task’s solu-
tion will always be limited by stage of the researcher.

Measurement of Performance

Commons and Richards (1984a, 1984b), Fischer, Hand, and Russell (1984), Klahr and Wal-
lace, (1976), Case (1982), Pascual-Leone (1984), and Siegler (1986) measure stage of perfor-
mance through task analysis. Stage of performance has been measured after researchers make
a thorough task analysis of a series of tasks (Commons & Richards, 1984a,b; Campbell &
Bickhard, 1986). Task analysis is useful in isolating the steps of a task that are prerequisites
for later steps of the task.

Each task used to assess stage can be solved by a minimal set of required actions. The
minimal set of actions may include nonverbal actions, verbal actions, or both. There are no
tasks that have only one solution; the number of nonminimal solutions is infinite.6 Because
there are a number of possible solutions to any task, task analysis as well as an analysis of
actual performances yields more solutions to a task than those specified by the problem’s
creators. Scoring performance by using task analysis takes the fact of all possible solutions
into consideration.

The ‘‘psychologic’’ of stage consists of the implicit decision rules with which a subject
acts. These rules describe what a subject does in relationship to the task to be performed and
the conditions present surrounding the task. Order of performance in a domain is usually
characterized by the highest stage tasks that are performed adequately and consistently. How
optimal the measurement conditions are will influence the order at which a subject performs
(Commons, Grotzer, & Davidson, in preparation). As Campbell and Bickhard (1986) state,
there is no way to factor out the conditions and obtain an underlying competence as implied
by Fischer’s (Fischer, Hand, & Russell, 1984) interpretations that substantial physiological
changes accompany spurts in performance. A task may be solved at an order higher than the
nominal stage of the task. While one infers the possible ways the tasks can be accomplished,
there is no necessary simple correspondence between the nominal and the actual stage.

Theorem 6: Measures of performance: While the gaps between stages of a task are discrete,
measurement is continuous. Each discrete performance on a given stage task (actual or in-
ferred) either succeeds (1) or fails (0). A common set of performance measures exists if condi-
tions of choice theory are met in problem construction and interviewing. Performance consists
of a mixture of lower and higher stage acts. Probability of acts at a given stage thus goes
from 0 to 1, as shown in probability theory, when there is sampling over more than one instance
(see Commons & Calnek, 1984). We have proposed that choice theory and signal detection
(Commons & Rodriguez, 1993; Ellis, Commons, Rodriguez, Grotzer, & Stein, 1987, June;
Kantrowitz, Buhlman, & Commons, 1985, April; Munsinger, 1970) be used to ascertain stage
of performance from performance data. More recently, we recommend using Rasch (1980;
Spada & McGraw, 1985) and Saltus analyses (Spada & McGraw, 1985; Wilson, 1989). We
do find gaps in some performance, depending on how well the sequence of questions or scoring
was done.

6 Any solution can be made longer by applying an operation and its inverse or, for that
matter, the identity operation.
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